
E. E. Holmes, E. J. Ward, and M. D. Scheuerell

Analysis of multivariate time-
series using the MARSS package

version 3.0

July 13, 2012

Mathematical Biology Program

Northwest Fisheries Science Center, Seattle, WA

Holmes, E. E., E. J. Ward and M. D. Scheuerell 2012. Analysis of
multivariate time-series using the MARSS package version 3.0. NOAA
Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd E.,
Seattle, WA 98112. Contacts eli.holmes@noaa.gov, eric.ward@noaa.gov, and
mark.scheuerell@noaa.gov

Disclaimer: E. E. Holmes, E. J. Ward, and M. D. Scheuerell are NOAA
scientists employed by the U.S. National Marine Fisheries Service. The views
and opinions presented here are solely those of the authors and do not
necessarily represent those of our employer.

V

Preface

The initial motivation for our work with MARSS models was a collaboration
with Rich Hinrichsen. Rich developed a framework for analysis of multi-site
population count data using MARSS models and bootstrap AICb (Hinrich-
sen and Holmes, 2009). Our work (EEH and EJW) extended Rich’s frame-
work, made it more general, and led to the development of a parametric boot-
strap AICb for MARSS models, which allows one to do model-selection using
datasets with missing values (Ward et al., 2010; Holmes and Ward, 2010).
Later, we developed additional algorithms for simulation and confidence in-
tervals. Discussions with Mark Scheuerell led to an extensive revision of the
EM algorithm and to the development of a general EM algorithm for con-
strained MARSS models (Holmes, 2010). Discussions with Mark also led to a
complete rewrite of the model specification so that the package could be used
for MARSS models in general—rather than simply the form of MARSS model
used in our applications. Many collaborators have helped test the package; we
thank especially Yasmin Lucero, Kevin See, and Brice Semmens. Development
of the code into a R package would not have been possible without Kellie Wills,
who wrote much of the code outside of the algorithm functions. Finally, many
users have contacted us regarding issues that were unclear in the manual, er-
rors, or suggestions regarding new applications. Discussions with these users
have helped us improve the manual and go in new directions.

The case studies were developed for workshops on analysis of multivariate
time-series data given at the Ecological Society meetings since 2005 and taught
by us along with Yasmin Lucero, Stephanie Hampton, and Brice Semmens.
The case study on extinction estimation and trend estimation was initially
developed by Brice Semmens and later extended by us for this user guide.
The algorithm behind the TMU figure in Chapter 9 was developed during a
collaboration with Steve Ellner (Ellner and Holmes, 2008).

The authors are research scientists at the Northwest Fisheries Science Cen-
ter in the Mathematical Biology program. This work was conducted as part
of our jobs at the Northwest Fisheries Science Center, a research center for
NOAA Fisheries which is a US federal government agency. A CAMEO grant
from NOAA Fisheries supported Kellie Wills. During the initial stages of this
work, Eric Ward was supported on a post-doctoral fellowship from the Na-
tional Research Council.

You are welcome to use the code and adapt it with attribution. You should
use citation Holmes et al. (2012) for the MARSS package. It may not be used
in any commercial applications nor may it be copyrighted. Use of the EM
algorithm should cite Holmes (2010). Links to more code and publications on
MARSS applications can be found by following the links at EEH’s website
http://faculty.washington.edu/eeholmes. Links to our papers that use these
methods can also be found at the same website.

Contents

1 The MARSS package . 1
1.1 What does the MARSS package do? . 2
1.2 How to get started (quickly) . 3
1.3 Important notes about the algorithms . 4
1.4 Troubleshooting . 6
1.5 Other related packages . 7

2 Overview of the package functions . 11
2.1 The MARSS() function . 11
2.2 Core functions for fitting a MARSS model 12
2.3 Functions for a fitted marssMLE object . 12
2.4 Functions for marssm objects . 13

3 The MARSS() function . 15
3.1 u, a and π model structures . 16
3.2 Q, R, Λ model structures . 18
3.3 B model structures . 19
3.4 Z model . 19
3.5 Default model structures . 21

4 Algorithms used in the MARSS package 23
4.1 Kalman filter and smoother . 23
4.2 The exact likelihood . 24
4.3 Maximum-likelihood parameter estimation 25
4.4 Parametric and innovations bootstrapping 26
4.5 Simulation and forecasting . 27
4.6 Model selection . 27

5 Examples . 29
5.1 Fixed and estimated elements in parameter matrices 29
5.2 Different numbers of state processes . 30

VIII Contents

5.3 Time-varying parameters . 39
5.4 Printing and summarizing models and model fits 40
5.5 Confidence intervals on a fitted model . 41
5.6 Vectors of just the estimated parameters 43
5.7 Degenerate variance estimates . 44
5.8 Bootstrap parameter estimates . 46
5.9 Random initial conditions . 47
5.10 Data simulation . 48
5.11 Bootstrap AIC . 48

6 Incorporating covariates into MARSS models 51
6.1 Covariates as inputs . 51
6.2 Covariates with missing values or observation error 58

7 Lag-p models with MARSS . 61
7.1 Background . 61
7.2 MAR(2) models . 61
7.3 MAR(p) models . 64
7.4 MARSS(p): models with observation error 66

8 Case study instructions . 69

9 Case Study 1: Count-based population viability analysis
(PVA) using corrupted data . 71
9.1 Background . 71
9.2 Simulated data with process and observation error 72
9.3 Maximum-likelihood parameter estimation 75
9.4 Probability of hitting a threshold Π(xd , te) 80
9.5 Certain and uncertain regions . 84
9.6 More risk metrics and some real data . 86
9.7 Confidence intervals . 88
9.8 Comments . 89

10 Case study 2: Combining multi-site data to estimate
regional population trends . 91
10.1 Harbor seals in the Puget Sound, WA. 91
10.2 A single well-mixed Puget Sound population 93
10.3 Different observation error structures . 98
10.4 Two subpopulations, north and south . 101
10.5 Other population structures . 105
10.6 Discussion . 107

Contents IX

11 Case Study 3: Identifying spatial population structure
and covariance . 111
11.1 Harbor seals on the U.S. west coast . 111
11.2 How many distinct subpopulations? . 112
11.3 Is Hood Canal separate? . 115

12 Case Study 4: Dynamic factor analysis (DFA) 119
12.1 Overview of dynamic factor analysis . 119
12.2 The data . 121
12.3 Setting up the model in MARSS . 122
12.4 Using model selection to determine the number of trends 126
12.5 Using varimax rotation to determine the loadings and trends . . 129
12.6 Examining model fits . 130
12.7 Adding covariates . 132
12.8 Questions and further analyses . 133

13 Case Study 5: Analyzing noisy animal tracking data 135
13.1 A simple random walk model of animal movement 135
13.2 Loggerhead sea turtle tracking data . 136
13.3 Estimate locations from bad tag data . 137
13.4 Using specialized packages to analyze tag data 140
13.5 Questions and further analyses . 142

14 Case Study 6: Detection of outliers and structural breaks . . 145
14.1 River flow in the Nile River . 145
14.2 Different models for the Nile flow levels . 145
14.3 Observation and state residuals . 150

15 Case Study 7: Estimation of species interaction strengths
with and without covariates . 155
15.1 Background . 155
15.2 Two-species example using wolves and moose 156
15.3 Analysis a four-species plankton community 160

16 Case Study 8: Combining data from multiple time series . . . 173
16.1 Overview . 173
16.2 Salmon spawner surveys . 174
16.3 American kestrel abundance indices . 176

A Textbooks and articles that use MARSS modeling for
population modeling . 181

B Package MARSS: Warnings and errors . 185

References . 191

X Contents

Index . 195

1

The MARSS package

MARSS stands for Multivariate Auto-Regressive(1) State-Space. The MARSS
package is an R package for estimating the parameters of linear MARSS mod-
els with Gaussian errors. This class of model is extremely important in the
study of linear stochastic dynamical systems, and these models are important
in many different fields, including economics, engineering, genetics, physics
and ecology (Appendix A). The model class has different names in differ-
ent fields, for example in some fields they are termed dynamic linear mod-
els (DLMs) or vector autoregressive (VAR) state-space models. The MARSS
package allows you to easily fit time-varying constrained and unconstrained
MARSS models with or without covariates to multivariate time-series data
via maximum-likelihood using primarily an EM algorithm1.

A MARSS model, with Gaussian errors, takes the form:

xt = Btxt−1 + ut + Ctct + wt , where wt ∼ MVN(0,Qt) (1.1a)

yt = Ztxt + at + Dtdt + vt , where vt ∼ MVN(0,Rt) (1.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (1.1c)

The x equation is termed the state process and the y equation is termed the
observation process. Data enter the model as the y; that is the y is treated as
the data although there may be missing data. The ct and dt are inputs (aka,
exogenous variables, covariates or indicator variables).

The bolded terms are matrices with the following definitions:

x is a m×T matrix of states. Each xt is a realization of the random variable
Xt at time t.

w is a m×T matrix of the process errors. The process errors at time t are
multivariate normal with mean 0 and covariance matrix Qt .

y is a n×T matrix of the observations. Some observations may be missing.

1 Fitting via the BFGS algorithm is also provided using R ’s optim function, but
this is not the focus of the package.

2 1 The MARSS package

v is a n×T column vector of the non-process errors. The observation erros at
time t are multivariate normal with mean 0 and covariance matrix Rt .

Bt and Zt are parameters and are m×m and n×m matrices.
ut and at are parameters and are m×1 and n×1 column vectors.
Qt and Rt are parameters and are m×m and n×n variance-covariance matri-

ces.
π is either a parameter or a fixed prior. It is a m×1 matrix.
Λ is either a parameter or a fixed prior. It is a m×m variance-covariance

matrix.
Ct and Dt are parameters and are m× p and n×q matrices.
c and d are inputs (no missing values) and are p×T and q×T matrices.

In some fields, the u and a terms are routinely set to 0 or the model is
written in such a way that they are incorporated into B or Z. However, in other
fields, the u and a terms are the main objects of interest, and the model is
written to explicitly show them. We include them throughout our discussion,
but they can be set to zero if desired.

The AR(p) models can be written in the above form by properly defin-
ing the x vector and setting some of the R variances to zero; see Chapter 7.
Although the model appears to only include i.i.d. errors (vt and wt), in prac-
tice, AR(p) errors can be included by moving the errors into the state model.
Similarly, the model appears to have independent process (vt) and observa-
tion (wt) errors, however, in practice, these can be modeled as identical or
correlated by using one of the state processes to model the errors with the B
matrix set appropriately for AR or white noise—although one may have to
fix many of the parameters associated with the errors to have an identifiable
model. Study the case studies in this User Guide and textbooks on MARSS
models for examples of how a wide variety of autoregressive models can be
written in MARSS form.

1.1 What does the MARSS package do?

Written in an unconstrained form2, a MARSS model can be written out as
follows. Two state processes (x) and three observation processes (y) are used
here for example’s sake.

2 meaning all the elements in a parameter matrices are allowed to be different

1.2 How to get started (quickly) 3

[
x1
x2

]

t
=

[
b11 b12
b21 b22

][
x1
x2

]

t−1
+

[
w1
w2

]

t
,

[
w1
w2

]

t
∼ MVN

([
u1
u2

]
,

[
q11 q12
q21 q22

])




y1
y2
y3




t

=




z11 z12
z21 z22
z31 z32



[

x1
x2

]

t
+




v1
v2
v3




t

,




v1
v2
v3




t

∼ MVN






a1
a2
a3


 ,




r11 r12 r13
r21 r22 r23
r31 r32 r33






[
x1
x2

]

0
∼ MVN

([
π1
π2

]
,

[
ν11 ν12
ν21 ν22

])
or

[
x1
x2

]

1
∼ MVN

([
π1
π2

]
,

[
ν11 ν12
ν21 ν22

])

However not all parameter elements can be estimated simultaneously. Con-
straints are required in order to specify a model with a unique solution. The
MARSS package allows you to specify constraints by fixing elements in a pa-
rameter matrix or specifying that some, estimated, values in a matrix have
the same value. Here is an example of a MARSS model with fixed and shared
parameter elements:

[
x1
x2

]

t
=

[
a 0
0 a

][
x1
x2

]

t−1
+

[
w1
w2

]

t
,

[
w1
w2

]

t
∼ MVN

([
0.1
u

]
,

[
q11 q12
q21 q22

])




y1
y2
y3




t

=




d
c d
e e



[

x1
x2

]

t
+




v1
v2
v3




t

,




v1
v2
v3




t

∼ MVN






a1
a2
0


 ,




r 0 0
0 r 0
0 0 r






[
x1
x2

]

0
∼ MVN

([
π
π

]
,

[
1 0
0 1

])

The MARSS package fits models via maximum likelihood. The MARSS
package is unusual among packages for fitting MARSS models in that fitting
is performed via an EM algorithm (Holmes, 2010), although fitting via the
BFGS algorithm is also provided using R ’s optim function. The EM algo-
rithm gives robust estimation for datasets replete with missing values and for
high-dimensional models with various constraints. The EM algorithm is also
often used to provide initial conditions for the BFGS algorithm (or an MCMC
routine) in order to improve the performance of those algorithms. In addition,
the MARSS package supplies functions for bootstrap and approximate con-
fidence intervals, parametric and non-parametric bootstrapping, model selec-
tion (AIC and bootstrap AIC), simulation, and bootstrap bias correction.

1.2 How to get started (quickly)

If you already work with models in the form of Equation 1.1, you can imme-
diately fit your model with the MARSS package. Install the MARSS package

4 1 The MARSS package

and then type library(MARSS) at the command line to load the package. Look
at the Quick Start Guide and then skim through Chapter 5. Your data need
to be a matrix (not dataframe) with time going across the columns and any
non-data columns (like year) removed. The MARSS functions assume discrete
time steps and you will need a column for each time step. Replace any missing
time steps with a missing value holder (e.g. NA). Write your model down on
paper and identify which parameters correspond to which parameter matrices
in Equation 1.1. Call the MARSS() function (Chapter 3) using your data and
using the model argument to specify the structure of each parameter.

1.3 Important notes about the algorithms

Specification of a properly constrained model with a unique solution is the re-
sponsibility of the user because MARSS has no way to tell if you have specified
an insufficiently constrained model—with correspondingly an infinite number
of solutions.

Specifying a properly constrained model with a unique solution is impera-
tive. How do you know if the model is properly constrained? If you are using
a MARSS model form that is widely used, then you can probably assume that
it is properly constrained. If you go to papers where someone developed the
model or method, the issue of constraints necessary to ensure “identifiability”
will likely be addressed if it is an issue. Are you fitting novel MARSS models?
Then you will need to do some study on identifiability in this class of mod-
els using textbooks (see the textbook list at end of this User Guide). Note,
often textbooks do not address identifiability explicitly, rather it’s addressed
implicitly by only showing a model constructed in such a way that it is iden-
tifiable. In our work, if we suspect identification problems, we will often first
do a Bayesian analysis with flat priors and look for oddities in the posteriors,
such as ridges, plateaus or bimodality.

All code in the MARSS package is in native R . Thus the model fitting
is slow (relatively). In addition, the main Kalman filter/smoother algorithm
used in MARSS is implemented exactly as you see it in Shumway and Stoffer
(2006, p. 331-335), based on the original smoother presented in Rauch (1963).
Table 2 in Koopman (1993) indicates that this algorithm is 40-100 times
slower than the algorithm given in Kohn and Ansley (1989), Koopman (1993),
and Koopman et al. (1999). These faster filter and smoother algorithms are
available in the KFAS package, but unfortunately the KFAS package is missing
the lag-2 smoother needed by the EM algorithm and this limits its use in the
MARSS package.

EM algorithms will quickly get in the vicinity of the maximum likelihood,
but the final approach to the maximum is generally slow relative to quasi-
Newton methods. On the flip side, EM algorithms are quite robust to initial
conditions choices and can be extremely fast at getting close to the MLE val-
ues for high-dimensional models. The MARSS package also allows one to use

1.3 Important notes about the algorithms 5

the BFGS method to fit MARSS models, thus one can use an EM algorithm to
“get close” and then the BFGS algorithm to polish off the estimate. Restricted
maximum-likelihood algorithms are also available for AR(1) state-space mod-
els, both univariate (Staples et al., 2004) and multivariate (Hinrichsen, 2009).
REML can give parameter estimates with lower variance than plain maximum-
likelihood algorithms. However, the algorithms for REML when there are miss-
ing values are not currently available (although that will probably change in
the near future). Another maximum-likelihood method is data-cloning which
adapts MCMC algorithms used in Bayesian analysis for maximum-likelihood
estimation (Lele et al., 2007).

Missing values are seamlessly accommodated with the MARSS package.
Simply specify the way missing values are denoted in the data set (default is
miss.value=NA). The likelihood computations are exact and will deal appro-
priately with missing values. However, no innovations3 bootstrapping can be
done if there are missing values. Instead parametric bootstrapping must be
used.

You should be aware that maximum-likelihood estimates of variance in
MARSS models are fundamentally biased, regardless of the algorithm used.
This bias is more severe when one or the other of R or Q is very small, and
the bias does not go to zero as sample size goes to infinity. The bias arises
because variance is constrained to be positive. Thus if R or Q is essentially
zero, the mean estimate will not be zero and thus the estimate will be biased
high while the corresponding bias of the other variance will be biased low.
You can generate unbiased variance estimates using a bootstrap estimate of
the bias. The function MARSSparamCIs() will do this. However be aware that
adding an estimated bias to a parameter estimate will lead to an increase in
the variance of your parameter estimate. The amount of variance added will
depend on sample size.

You should also be aware that mis-specification of the prior on the initial
states (π and Λ) can have catastrophic effects on your parameter estimates
if your prior conflicts with the distribution of the initial states implied by
the MARSS model. These effects can be very difficult to detect because the
model will appear to be well-fitted. Unless you have a good idea of what the
parameters should be, you might not realize that your prior conflicts.

The most common problems, we have found with priors on x0 are the
following. Problem 1) The correlation structure in Λ (whether the prior is
diffuse or not) does not match the correlation structure in x0 implied by your
model. For example, you specify a diagonal Λ (independent states), but the
implied distribution has correlations. Problem 2) The correlation structure in
Λ does not match the structure in x0 implied by constraints you placed on
π. For example, you specify that all values in π are shared, yet you specify
that Λ is diagonal (independent). Unfortunately, using a diffuse prior does not
help with these two problems because the diffuse prior still has a correlation

3 referring to the non-parametric bootstrap developed by Stoffer and Wall (1991).

6 1 The MARSS package

structure and can still conflict with the implied correlation in x0. One way
to get around these problems is to set Λ=0 (a m×m matrix of zeros) and
estimate π ≡ x0 only. Now π is a fixed but unknown (estimated) parameter,
not the mean of a distribution. In this case, Λ does not exist in your model and
there is no conflict with the model. Unfortunately estimating π as a parameter
is not always robust. If you specify that Λ=0 and specify that π corresponds
to x0, but your model “explodes” when run backwards, you cannot estimate π
because you cannot get a good estimate of x0. Sometimes this can be avoided
by specifying that π corresponds to x1 so that it can be constrained by the
data y1. In summary, if the implied correlation structure of your initial states
is independent (diagonal variance-covariance matrix), you should generally be
ok with a diagonal and high variance prior or with treating the initial states as
parameters (with Λ = 0). But if your initial states have an implied correlation
structure that is not independent, then proceed with caution.

There is a large class of models in the statistical finance literature that
have the form

xt+1 = Bxt + Γηt

yt = Zxt + ηt

For example, ARMA(p,q) models can be written in this form. The MARSS
model framework in this package will not allow you to write models in that
form. You can put the ηt into the xt vector and set R = 0 to make models
of this form using the MARSS form, but the EM algorithm in the MARSS
package won’t let you estimate parameters because the parameters will drop
out of the full likelihood being maximized in the algorithm.

1.4 Troubleshooting

Numerical errors due to ill-conditioned matrices are not uncommon when
fitting MARSS models. The Kalman and EM algorithms need inverses of
matrices. If those matrices become ill-conditioned, for example all elements
are close to the same value, then the algorithm becomes unstable. Warning
messages will be printed if the algorithms are becoming unstable and you
can set control$trace=1, to see details of where the algorithm is becoming
unstable. Whenever possible, you should avoid using shared π values in your
model4. The way our algorithm deals with Λ tends to make this case unstable,
especially if R is not diagonal. In general, estimation of a non-diagonal R is
more difficult, more prone to ill-conditioning, and more data-hungry.

You may also see non-convergence warnings, especially if your MLE model
turns out to be degenerate. This means that one of the elements on the di-
agonal of your Q or R matrix are going to zero (are degenerate). It will take
the EM algorithm forever to get to zero. BFGS will have the same problem,

4 An example of a π with shared values is π =
[a

a
a

]
.

1.5 Other related packages 7

although it will often get a bit closer to the degenerate solution. If you are
using method="kem", MARSS will warn you if it looks like the solution is de-
generate. If you use control=list(allow.degen=TRUE), the EM algorithm
will attempt to set the degenerate variances to zero (instead of trying to get to
zero using an infinite number of iterations). However, if one of the variances is
going to zero, first think about why this is happening. This is typically caused
by one of three problems: 1) you made a mistake in inputting your data, e.g.
used miss.value = -99 but passed in miss.value=NA in the function call, 2)
your data are not sufficient to estimate multiple variances or 3) your data are
inconsistent with the model you are trying fit.

The algorithms in the MARSS package are designed for cases where the Q
and R diagonals are all non-minuscule. For example, the EM update equation
for u will grind to a halt (not update u) if Q is tiny (like 1E-7). Conversely,
the BFGS equations are likely to miss the maximum-likelihood when R is tiny
because then the likelihood surface becomes hyper-sensitive to π. The solution
is to use the degenerate likelihood function for the likelihood calculation and
the EM update equations. MARSS will implement this automatically when
Q or R diagonal elements are set to zero and will try setting Q and R terms
to zero automatically if control$allow.degen=TRUE. One odd case can oc-
cur when R goes to zero (a matrix of zeros), but you are estimating π. If
model$tinitx=1, then π must be y1 as R goes to zero, but as R goes to zero,
the log-likelihood will go (correctly) to infinity. But if you set R = 0, the log-
likelihood will be finite. The reason is that R≈ 0 and R = 0 specify different
likelihoods. In the first, the determinant R will appear, and this goes to pos-
itive infinity as R goes to zero. In the second case, R does not appear in the
likelihood and so the determinant of R does not appear. If some elements of
the diagonal of R are going to zero, you should be suspect of the parameter
estimates. Sometimes the structure of your data, e.g. one data value followed
by a long string of missing values, is causing an odd spike in the likelihood at
R≈ 0. Try manually setting R equal to zero to get the correct log-likelihood5.

1.5 Other related packages

Packages that will do Kalman filtering and smoothing are many, but pack-
ages that estimate the parameters in a MARSS model, especially constrained
MARSS models, are much less common. The following are those with which we
are familiar, however there are certainly more packages for estimating MARSS
models in engineering and economics of which we are unfamiliar. The MARSS
package is unusual in that it uses an EM algorithm for maximizing the likeli-
hood as opposed to a Newton-esque method (e.g. BFGS). The package is also

5 The likelihood returned when R≈ 0 is not incorrect. It is just not the likelihood
that you probably want. You want the likelihood where the R term is dropped
because it is zero.

8 1 The MARSS package

unusual in that it allows you to specify the initial conditions at t = 0 or t = 1,
allows degenerate models (with some of the diagonal elements of R or Q equal
to zero). Lastly, model specification in the MARSS package has a one-to-one
relationship between the model list in MARSS and the model as you would
write it on paper as a matrix equation. This makes the learning curve a bit
less steep.

DLM DLM is an R package for fitting MARSS models. Our impression is
that it is mainly Bayesian focused but it does allow MLE estimation via
the optim() function. It has a book, Dynamic Linear Models with R by
Petris et al., which has many examples of how to write MARSS models
for different applications.

sspirs sspirs an R package for fitting ARSS (univariate) models with Gaussian,
Poisson and binomial error distributions.

dse dse (Dynamic Systems Estimation) is a R package for multivariate Gaus-
sian state space models with a focus on ARMA models.

SsfPack SsfPack is a package for Ox/Splus that fits constrained multivariate
Gaussian state space models using mainly (it seems) the BFGS algorithm
but the newer versions support other types of maximization. SsfPack is
very flexible and written in C to be fast. It has been used extensively
on statistical finance problems and is optimized for dealing with large
(financial) data sets. It is used and documented in Time Series Analysis
by State Space Methods by Durbin and Koopman, An Introduction to
State Space Time Series Analysis by Commandeur and Koopman, and
Statistical Algorithms for Models in State Space Form: SsfPack 3.0, by
Koopman, Shephard, and Doornik.

Brodgar The Brodgar software was developed by Alain Zuur to do (among
many other things) dynamic factor analysis, which involves a special type
of MARSS model. The methods and many example analyses are given
in Analyzing Ecological Data by Zuur, Ieno and Smith. This is the one
package that we are aware of that also uses an EM algorithm for parameter
estimation.

eViews eViews is a commercial economics software that will estimate at least
some types of MARSS models.

KFAS The KFAS R package provides a fast Kalman filter and smoother.
Examples in the package show how to estimate MARSS models using the
KFAS functions and R ’s optim() function. The MARSS package uses the
filter and smoother functions from the KFAS package when feasible; the
KFAS package uses the initial condition set at t = 1 and cannot be used
when the initial condition is set at t = 0.

S+FinMetrics An S-plus module for fitting MAR models, which are called
vector autoregressive (VAR) models in the economics and finance litera-
ture. I has some support for state-space VAR models, though we haven’t
used it so are not sure which parameters it allows you to estimate. It was
developed by Andrew Bruce, Doug Martin, Jiahui Wang, and Eric Zivot,

1.5 Other related packages 9

and it has a book associated with it: Modeling Financial Time Series with
S-plus by Eric Zivot and Jiahui Wang.

kftrack The kftrack R package provides a suite of functions specialized for
fitting MARSS models to animal tracking data.

2

Overview of the package functions

The MARSS package is object-based. It has two main types of objects: a
model object (class marssm) and a maximum-likelihood fitted model object
(class marssMLE). A marssm object specifies the structure of the model to
be fitted. It is an R code version of the MARSS equation (Equation 1.1).
A marssMLE object specifies both the model and the information necessary
for fitting (initial conditions, controls, method). If the model has been fitted,
the marssMLE object will also have the parameter estimates and (optionally)
confidence intervals and bias.

2.1 The MARSS() function

The function MARSS() is an interface to the core fitting functions in the
MARSS package. It allows a user to fit a MARSS model using a list to de-
scribe the model structure. It returns marssm and marssMLE objects which
the user can later use in other functions, e.g. simulating or computing boot-
strap confidence intervals.

MLEobj=MARSS(data, model=list(), ..., fit=TRUE) This function will fit
a MARSS model to the data using a model list which is a list describing
the structure of the model parameter matrices. In the default model, i.e.
if you use MARSS(dat) with no model argument, Z and B are the identity
matrix, R is a diagonal matrix with one variance, Q is a diagonal ma-
trix with unique variances, u is unique, a is scaling, and C, c, D, and d
are all zero. The output is a marssMLE object where the estimated pa-
rameter matrices are in MLEobj$par. If fit=FALSE, it returns a minimal
marssMLE object that is ready for passing to a fitting function (below)
but with no par element.

12 2 Overview of the package functions

2.2 Core functions for fitting a MARSS model

The following core functions are designed to work with ‘unfitted’ marssMLE
objects, that is a marssMLE object without the par element. Users do not
normally need to call the MARSSkem or MARSSoptim functions since MARSS()

will call those. Below MLEobj means the argument is a marssMLE object. Note,
these functions can be called with a marssMLE object with a par element,
but these functions will overwrite that element.

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the EM algo-
rithm to the data using a properly specified marssMLE object, which has
data, the marssm object and the necessary initial condition and control
elements. See the appendix on the object structures in the MARSS pack-
age. MARSSkem does no error-checking. See is.marssMLE(). MARSSkem uses
MARSSkf described below.

MLEobj=MARSSoptim(MLEobj) This will fit a MARSS model via the BFGS al-
gorithm provided in optim(). This requires a properly specified marssMLE
object, such as would be passed to MARSSkem.

MLEobj=MARSSmcinit(MLEobj) This will perform a Monte Carlo initial con-
ditions search and update the marssMLE object with the best initial con-
ditions from the search.

is.marssMLE(MLEobj) This will check that a marssMLE object is properly
specified and ready for fitting. This should be called before MARSSkem

or MARSSoptim is called. This function is not typically needed if using
MARSS() since MARSS() builds the model object for the user and does
error-checking on model structure.

2.3 Functions for a fitted marssMLE object

The following functions use a marssMLE object that has a populated par

element, i.e. a marssMLE object returned from one of the fitting functions
(MARSS, MARSSkem, MARSSoptim). Below modelObj means the argument is a
marssm object and MLEobj means the argument is a marssMLE object. Type
?function.name to see information on function usage and examples.

kf=MARSSkf(MLEobj) This will compute the expected values of the hidden
states given data via the Kalman filter (to produce estimates conditioned
on 1 : t−1) and the Kalman smoother (to produce estimates conditioned
on 1 : T). The function also returns the exact likelihood of the data condi-
tioned on MLEobj$par. A variety of other Kalman filter/smoother infor-
mation is also output (kf is a list of output); see ?MARSSkf for details.

MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc,
and AICb, to a marssMLE object.

boot=MARSSboot(MLEobj) This returns a list containing bootstrapped pa-
rameters and data via parametric or innovations bootstrapping.

2.4 Functions for marssm objects 13

MLEobj=MARSShessian(MLEobj) This adds a numerically estimated Hessian
matrix to a marssMLE object.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence in-
tervals, and bootstrap estimated bias for the maximum-likelihood param-
eters using bootstrapping or the Hessian to the passed in marssMLE ob-
ject.

sim.data=MARSSsimulate(MLEobj) This returns simulated data from a MARSS
model specified via a list of parameter matrices in MLEobj$parList (this
is a list with elements Q, R, U, etc).

paramVec=MARSSvectorizeparam(MLEobj) This returns the estimated (and
only the estimated) parameters as a vector. This is useful for storing the
results of simulations and for writing functions that fit MARSS models
using R’s optim function.

new.MLEobj=MARSSvectorizeparam(MLEobj, paramVec) This will return a
marssMLE object in which the estimated parameters (which are in MLEobj$par

along with the fixed values) are replaced with the values in paramVec.

2.4 Functions for marssm objects

is.marssm(modelObj) This will check that the free and fixed matrices in a
marssm object are properly specified. This function is not typically needed
if using MARSS() since MARSS() builds the marssm object for the user and
does error-checking on model structure.

summary(modelObj) This will print the model parameter matrices showing
the fixed values (in parentheses) and the location of the estimated ele-
ments. The estimated elements are shown as g1, g2, g3, ... which indicates
which elements are shared (i.e., forced to have the same value). For ex-
ample, an i.i.d. R matrix would appear as a diagonal matrix with just g1
on the diagonal.

3

The MARSS() function

From the user perspective, the main package function is MARSS(). This fits a
MARSS model (Equation 1.1) to a matrix of data:

MARSS(data, model=list(), form="marxss"))

The model argument is a list with names B, U, C, c, Q, Z, A, D, d, R, x0, V0. Ele-
ments can be left off to use default values. The form argument tells MARSS()
what how to use the model list elements. The default is form="marxss" which
is the model in Equation 1.1.

The data must be passed in as a n×T matrix, that is time goes across
columns. A vector is not a matrix, nor is a dataframe. A data matrix of 3
inputs (n = 3) measured for 6 time steps might look like

y =




1 2 NA NA 3.2 8
2 5 3 NA 5.1 5
1 NA 2 2.2 NA 7




where NA denotes a missing value.
The argument model specifies the structure of the MARSS model. It is a

list, where the list elements for each model parameter specifies the form of
that parameter.

The most general way to specify model structure is to use a list matrix.
The list matrix allows one to combine fixed and estimated elements in one’s
parameter specification. It allows a one-to-one correspondence between how
you write the parameter matrix on paper and how you specify it in R . For
example, let’s say Q and u have the following forms in your model:

Q =




a 0 0
0 a 0
0 0 1


 and u =




0.05
b
c




So Q is a diagonal matrix with the 3rd variance fixed at 1 and the 1st and
2nd estimated and equal. The 1st element of u is fixed, and the 2nd and 3rd
are estimated and different. You can specify this using a list matrix:

16 3 The MARSS() function

Q=matrix(list("a",0,0,0,"a",0,0,0,1),3,3)

U=matrix(list(0.05,"b","c"),3,1)

If you print out Q and U, you will see they look exactly like Q and u written
above. MARSS will keep the fixed values fixed and estimate a, b, and c.

List matrices allow the most flexible model structures, but MARSS also has
text shortcuts for a number of common model structures. Below the possible
ways to specify each model parameter are shown. The forms are shown using
m = 3 (the number of hidden state processes) and n = 3 (number of observation
time series).

3.1 u, a and π model structures

u, a and π are all row matrices and the options for specifying their structures
are the same. The most general way to specify structure is to use a list matrix,
but there are text shortcuts for the common structures. a has one special
option, "scaling" described below. The allowable structures are shown using
u as an example. Note that you should be careful about specifying shared
structure in π because you need to make sure the structure in Λ matches.
For example, if you require that all the π values are shared (equal) then Λ
cannot be a diagonal matrix since that would be saying that the π values are
independent, which they are clearly not if you force them to be equal.

U=matrix(list(),m,1): This is the most general form and allows one
to specify fixed and estimated elements in u. Each character string in
u is the name of one of the u elements to be estimated. For example if
U=matrix(list(0.01,"u","u"),3,1), then u in the model has the fol-
lowing structure: 


0.01

u
u




U=matrix(c(),m,1), where the values in c() all character strings: Each
character string is the name of an element to be estimated. For exam-
ple if U=matrix(c("u1","u1","u2"),3,1), then u in the model has the
following structure: 


u1
u1
u2




and two values being estimated. U=matrix(list("u1","u1","u2"),3,1)
has the same effect.

U="unequal" or U="unconstrained": Each element of u is estimated. If
m = 3, then u would have the form:

3.1 u, a and π model structures 17




u1
u2
u3




U="equal": There is only one value in u:




u
u
u




U=matrix(c(),m,1), where the values in c() all numerical values: u is
fixed and has no estimated values. If U=matrix(c(0.01,1,-0.5),3,1),
then u in the model has the following structure:




0.01
1
−0.5




U=matrix(list(0.01,1,-0.5),3,1) would have the same effect.

U="zero": u is all zero: 


0
0
0




The a parameter has a special option, "scaling", which is the default
behavior. In this case, a is treated like a scaling parameter. If there is only
one y row associated with an x row, then the corresponding a element is
0. If there are more than one y rows associated with an x row, then the
first a element is set to 0 and the others are estimated. For example, say
m = 2 and n = 4 and Z looks like the following:

Z =




1 0
1 0
1 0
0 1




Then the 1st-3rd rows of y are associated with the first row of x, and the
4th row of y is associated with the last row of x. Then if a is specified as
"scaling", a has the following structure:




0
a1
a2
0




18 3 The MARSS() function

3.2 Q, R, Λ model structures

The possible Q, R, and Λ model structures are identical, except that R is n×n
while Q and Λ are m×m. The most general way to specify these variance-
covariance matrices is using a list matrix. All types of structures can be spec-
ified using a list matrix, however there are also text shortcuts for specifying
common structures. The structures are shown using Q as the example.

Q=matrix(list(),m,m): This is the most general way to specify the pa-
rameters and allows there to be fixed and estimated elements. Each char-
acter string in the list matrix is the name of one of the Q elements to be
estimated, and each numerical value is a fixed value. For example if
Q=matrix(list("s2a",0,0,0,"s2a",0,0,0,"s2b"),3,3),
then Q has the following structure:




σ2
a 0 0

0 σ2
a 0

0 0 σ2
b




Note that diag(c("s2a","s2a","s2b")) will not have the desired effect
of producing a matrix with numeric 0s on the off-diagonals. It will have
character 0s and MARSS will interpret “0” as the name of an element of
Q to be estimated. Instead, the following two lines can be used:
Q=matrix(list(0),3,3)

diag(Q)=c("s2a","s2a","s2b")

Q="diagonal and equal": There is only one process variance value in this
case: 


σ2 0 0
0 σ2 0
0 0 σ2




Q="diagonal and unequal": There are m process variance values in this
case: 


σ2

1 0 0
0 σ2

2 0
0 0 σ2

3




Q="unconstrained": There are values on the diagonal and the off-diagonals
of Q and the variances and covariances are all different:




σ2
1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3




There are m process variances and (m2−m)/2 covariances in this case, so
(m2 +m)/2 values to be estimated. Note that variance-covariance matrices
are never truly unconstrained since the upper and lower triangles of the
matrix must be equal.

3.4 Z model 19

Q="equalvarcov": There is one process variance and one covariance:




σ2 β β
β σ2 β
β β σ2




Q=matrix(c(), m, m), where all values in c() are character strings: Each
element in Q is estimated and each character string is the name of a value
to be estimated. Note if m = 1, you still need to wrap its value in matrix()

so that its class is matrix.

Q=matrix(c(), m, m), where all values in c() are numeric values: Each
element in Q is fixed to the values in the matrix.

Q="identity": The Q matrix is the identity matrix:




1 0 0
0 1 0
0 0 1




Q="zero": The Q matrix is all zeros:




0 0 0
0 0 0
0 0 0




Be careful when setting Λ model structures. Mis-specifying the structure
of Λ can have catastrophic, but difficult to discern, effects on your estimates.
See the comments on priors in Chapter 1.

3.3 B model structures

Like the variance-covariance matrices (Q,R and Λ), B can be specified with
a list matrix to allow you to have both fixed and shared elements in the B
matrix. Character matrices and matrices with fixed values operate the same
way as for the variance-covariance matrices. In addition, the same text short-
cuts are available: “unconstrained”, “identity”, “diagonal and equal”, “diagonal
and unequal”, “equalvarcov”, and “zero”. A fixed B can be specified with a
numeric matrix, but all eigenvalues must fall within the unit circle; meaning
all(abs(eigen(B)$values)>=1)..

3.4 Z model

Like B and the variance-covariance matrices, Z can be specified with a list
matrix to allow you to have both fixed and estimated elements in Z. If Z is a

20 3 The MARSS() function

square matrix, many of the same text shortcuts are available: “diagonal and
equal”, “diagonal and equal”, and “equalvarcov”. If Z is a design matrix1, then
a special shortcut is available using factor() which allows you to specify
which y rows are associated with which x rows. See Chapter 5 and the case
studies chapters for more examples.

Z=factor(c(1,1,1)): All y time series are observing the same (and only)
hidden state trajectory x (n = 3 and m = 1):

Z =




1
1
1




Z=factor(c(1,2,3)): Each time series in y corresponds to a different
hidden state trajectory. This is the default Z model and in this case n = m:

Z =




1 0 0
0 1 0
0 0 1




Z=factor(c(1,1,2)): The first two time series in y corresponds to one
hidden state trajectory and the third y time series corresponds to a differ-
ent hidden state trajectory. Here n = 3 and m = 2:

Z =




1 0
1 0
0 1




The Z model can be specified using either numeric or character factor
levels. c(1,1,2) is the same as c("north","north","south")

Z="identity": This is the default behavior. This means Z is a n×n identity
matrix and m = n. If n = 3, it is the same as Z=factor(c(1,2,3)).

Z=matrix(c(), n, m), where the elements in c() are all strings: Passing
in a n×m character matrix, means that each character string is a value
to be estimated. Be careful that you are specifying an identifiable model
when using this option.

Z=matrix(c(), n, m), where the elements in c() are all numeric: Passing
in a n×m numeric matrix means that Z is fixed to the values in the matrix.
The matrix must be numeric but it does not need to be a design matrix.

Z=matrix(list(), n, m): Passing in a n×m list matrix allows you to
combine fixed and estimated values in the Z matrix. Be careful that you
are specifying an identifiable model.

1 a matrix with only 0s and 1s and where the row sums are all equal to 1

3.5 Default model structures 21

3.5 Default model structures

The defaults for the model arguments in form="marxss" are

Z="identity" each y in y corresponds to one x in x
B="identity" no interactions between the x’s in x
U="unequal" the u’s in u are all different
Q="diagonal and unequal" process errors are independent but have dif-
ferent variances
R="diagonal and equal" the observations are i.i.d.
A="scaling" a is a set of scaling factors
C="zero" and D="zero" no inputs.
c="zero" and d="zero" no inputs.
pi="unequal" all initial states are different
V0="zero" the initial condition on the states (x0 or x1) is fixed but un-
known

4

Algorithms used in the MARSS package

4.1 Kalman filter and smoother

The MARSS model (Equation 1.1) is a linear dynamical system in discrete
time. In 1960, Rudolf Kalman published the Kalman filter (Kalman, 1960), a
recursive algorithm that solves for the expected value of the hidden state(s) at
time t conditioned on the data up to time t: E(Xt |yt

1). The Kalman filter gives
the optimal (lowest mean square error) estimate of the unobserved xt based
on the observed data up to time t for this class of linear dynamical system.
The Kalman smoother (Rauch et al., 1965) solves for the expected value of
the hidden state(s) conditioned on all the data: E(Xt |yT

1). If the errors in the
stochastic process are Gaussian, then the estimators from the Kalman filter
and smoother are also the maximum-likelihood estimates.

However, even if the the errors are not Gaussian, the estimators are opti-
mal in the sense that they are estimators with the least variability possible.
This robustness is one reason the Kalman filter is so powerful—it provides
well-behaving estimates of the hidden states for all kinds of multivariate au-
toregressive processes, not just Gaussian processes. The Kalman filter and
smoother are widely used in time-series analysis, and there are many text-
books covering it and its applications. In the interest of giving the reader a
single point of reference, we use Shumway and Stoffer (2006) as our primary
reference.

The MARSSkf function provides the Kalman filter and smoother in native
R . The algorithm in MARSSkf is that shown in Shumway and Stoffer (2006).
This algorithm is not computationally efficient; see Koopman et al. (1999,
sec. 4.3) for a more efficient Kalman filter implementation. The Koopman et
al. implementation is provided in the functions MARSSkfas using the KFAS R
package. MARSSkf (and MARSSkfas with a few exceptions) has the following
outputs:

xtt1 The expected value of Xt conditioned on the data up to time t−1.
xtt The expected value of Xt conditioned on the data up to time t.

24 4 Algorithms used in the MARSS package

xtT The expected value of Xt conditioned on all the data from time 1 to T .
This the smoothed state estimate.

Vtt1 The variance of Xt conditioned on the data up to time t−1. Denoted
Pt−1

t in section 6.2 in Shumway and Stoffer (2006).
Vtt The variance of Xt conditioned on the data up to time t. Denoted Pt

t in
section 6.2 in Shumway and Stoffer (2006).

VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The covariance of Xt and Xt−1 conditioned on all the data, 1 to T . Not

currently output by MARSSkfas.
Kt The Kalman gain. This is part of the update equations and relates to

the amount xtt1 is updated by the data at time t to produce xtt. Not
currently output by MARSSkfas.

J This is similar to the Kalman gain but is part of the Kalman smoother.
See Equation 6.49 in Shumway and Stoffer (2006). Not currently output
by MARSSkfas.

Innov This has the innovations at time t, defined as εt ≡ yt -E(Yt). These are
the residuals, the difference between the data and their predicted values.
See Equation 6.24 in Shumway and Stoffer (2006).

Sigma This has the Σt , the variance-covariance matrices for the innovations
at time t. This is used for the calculation of confidence intervals, the s.e.
on the state estimates and the likelihood. See Equation 6.25 in Shumway
and Stoffer (2006) for the Σt calculation.

logLik The log-likelihood of the data conditioned on the model parameters.

4.2 The exact likelihood

The likelihood of the data given a set of MARSS parameters is part of the
output of the MARSSkf and MARSSkfas functions. The likelihood computation
is based on the innovations form of the likelihood (Schweppe, 1965) and uses
the output from the Kalman filter:

log L(Θ|data) =− N
2log(2π)

− 1
2

(
T

∑
t=1

log |Σt |+
T

∑
t=1

(εt)
>Σ−1

t εt

)
(4.1)

where N is the total number of data points, εt is the innovations at time t and
|Σt | is the determinant of the innovations variance-covariance matrix at time t.
Reference Equation 6.62 in Shumway and Stoffer (2006). However there are a
few differences between the log-likelihood output by MARSSkf and MARSSkfas

and that described in Shumway and Stoffer (2006).
The standard likelihood calculation (Equation 6.62 in Shumway and Stoffer

(2006)) is biased when there are missing values in the data, and the missing
data modifications discussed in Section 6.4 in Shumway and Stoffer (2006) do
not correct for this bias. Harvey (1989), Section 3.4.7, discusses at length that
the standard missing values correction leads to an inexact likelihood when

4.3 Maximum-likelihood parameter estimation 25

there are missing values. The bias is minor if there are few missing values, but
it becomes severe as the number of missing values increases. Many ecological
datasets may have over 25% missing values and this level of missing values
leads to a very biased likelihood if one uses the inexact formula. Harvey (1989)
provides some non-trivial ways to compute the exact likelihood.

We use instead the exact likelihood correction for missing values that is
presented in Section 12.3 in Brockwell and Davis (1991). This solution is
straight-forward to implement. The correction involves the following changes
to εt and Σt in the Equation 4.1. Suppose the value yi,t is missing. First, the
corresponding i-th value of εt is set to 0. Second, the i-th diagonal value of Σt
is set to 1 and the off-diagonal elements on the i-th column and i-th row are
set to 0.

4.3 Maximum-likelihood parameter estimation

4.3.1 EM algorithm

Function MARSSkem in the MARSS package provides a maximum-likelihood al-
gorithm which uses an Expectation-Maximization (EM) algorithm with out-
put from the Kalman smoother (Holmes, 2010). EM algorithms are widely
used algorithms that extend maximum-likelihood estimation to cases where
there are hidden random variables in a model (Dempster et al., 1977; Harvey,
1989; Harvey and Shephard, 1993; McLachlan and Krishnan, 2008).

The EM algorithm finds the maximum-likelihood estimates of the parame-
ters in a MARSS model using an iterative process. Starting with an initial set
of parameters1, which we will denote Θ̂1, an updated parameter set Θ̂2 is ob-
taining by finding the Θ̂2 that maximizes the expected value of the likelihood
over the distribution of the states (X) conditioned on Θ̂1:

Θ̂2 = argmax
Θ

EX|Θ̂1
[logL(Θ|Y = yT

1 ,X)] (4.2)

Then using Θ̂2 in place of Θ̂1 in Equation (4.2), an updated parameter set Θ̂3 is
calculated. This is repeated until the expected log-likelihood stops increasing
(or increases less than some set tolerance level).

Implementing this algorithm is straight-forward, hence its popularity.

1. Set an initial set of parameters, Θ̂1
2. E step: using the model for the hidden states (X) and Θ̂1, calculate the

expected values of X conditioned on all the data yT
1 ; this is xtT output by

MARSSkf. Also calculate expected values of any functions of X, g(X), that
appear in your expected log-likelihood function.

1 You can choose these however you wish, however choosing something not too far
off from the correct values will make the algorithm go faster.

26 4 Algorithms used in the MARSS package

3. M step: put those E(X|Y = yT
1 ,Θ̂1) and E(g(X)|Y = yT

1 ,Θ̂1) into your ex-
pected log-likelihood function in place of X (and g(X)) and maximize with
respect to Θ. This gives you Θ̂2.

4. Repeat the E and M steps until the log likelihood stops increasing.

The EM equations used in the MARSS package (function MARSSkem) are
described in Holmes (2010) and are extensions of those in Shumway and Stoffer
(1982) and Ghahramani and Hinton (1996). Our EM algorithm is an extended
version because our algorithm is for cases where there are constraints within
the parameter matrices (shared values, diagonal structure, block-diagonal
structure, ...), where there are fixed values within the parameter matrices,
and where there may be 0s on the diagonal of Q, R and Λ.

The EM algorithm is a hill-climbing algorithm and like all hill-climbing
algorithms can get stuck on local maxima. The MARSS package includes a
Monte-Carlo initial conditions searcher (function MARSSmcinit) based on Bier-
nacki et al. (2003) to minimize this problem. EM algorithms are also known
to get close to the maximum very quickly but then creep toward the absolute
maximum. Once in the vicinity of the maximum, quasi-Newton methods find
the absolute maximum much faster, but they can be sensitive to initial con-
ditions and in practice, we have found the EM algorithm to be much faster
for large problems.

4.4 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on
the parameter estimates (Stoffer and Wall, 1991) and to compute the small-
sample AIC corrector for MARSS models (Cavanaugh and Shumway, 1997);
the functions MARSSparamCIs and MARSSaic do these computations.

The MARSSboot function provides both parametric and innovations boot-
strapping of MARSS models. The innovations bootstrap algorithm by Stoffer
and Wall (1991) bootstraps the model residuals (the innovations). This is a
semi-parametric bootstrap since is uses, partially, the maximum-likelihood pa-
rameter estimates. This algorithm cannot be used if there are missing values
in the data. Also for short time series, it gives biased bootstraps because one
cannot resample the first few innovations.

MARSSboot also provides a fully parametric bootstrap. This uses the
maximum-likelihood MARSS parameters to simulate data from which boot-
strap parameter estimates are obtained. Our research (Holmes and Ward,
2010) indicates that this provides unbiased bootstrap parameter estimates,
and it works with datasets with missing values. Lastly, MARSSboot can also
output parameters sampled from a numerically estimated Hessian matrix.

4.6 Model selection 27

4.5 Simulation and forecasting

The MARSSsimulate function simulates from a fitted marssMLE object (e.g.
output from a MARSS() call). It use the mvrnorm function to produce draws
of the process and observation errors from multivariate normal distributions
for each time step.

4.6 Model selection

The package provides a MARSSaic function for computing AIC, AICc and
AICb. The latter is a small-sample corrector for autoregressive state-space
models. The bias problem with AIC and AICc for short time-series data
has been shown in Cavanaugh and Shumway (1997) and Holmes and Ward
(2010). AIC and AICc tend to select overly complex MARSS models when
the time-series data are short. AICb corrects this bias. The algorithm for a
non-parametric AICb is given in Cavanaugh and Shumway (1997). Their al-
gorithm uses the innovations bootstrap (Stoffer and Wall, 1991), which means
it cannot be used when there are missing data. We added a parametric AICb
(Holmes and Ward, 2010), which uses a parametric bootstrap. This algorithm
allows one to compute AICb when there are missing data and it provides
unbiased AIC even for short time series. See Holmes and Ward (2010) for
discussion and testing of parametric AICb for MARSS models.

AICb is comprised of the familiar AIC fit term, −2logL, plus a penalty
term that is the mean difference between the log likelihood the data under the
bootstrapped maximum-likelihood parameter estimates and the log likelihood
of the data under the original maximum-likelihood parameter estimate:

AICb =−2log L(Θ̂|y)+ 2
(

1
Nb

Nb

∑
i=1
− log

L(Θ̂∗(i)|y)

L(Θ̂|y)

)
(4.3)

where Θ̂ is the maximum-likelihood parameter set under the original data y,
Θ̂∗(i) is a maximum-likelihood parameter set estimated from the i-th boot-
strapped data set y∗(i), and Nb is the number of bootstrap data sets. It is
important to notice that the likelihood in the AICb equation is L(Θ̂∗|y) not
L(Θ̂∗|y∗). In other words, we are taking the average of the likelihood of the
original data given the bootstrapped parameter sets.

5

Examples

In this chapter, we work through a series of short examples using the MARSS
package functions. This chapter is oriented towards those who are already
somewhat familiar with MARSS models and want to get started quickly. We
provide no explanatory text. Those unfamiliar with MARSS models might
want to start with the case studies.

In these examples, we will use the default form="marxss" argument for a
MARSS() call. This specifies a MARSS model of the form:

xt = Btxt−1 + ut + Ctct + wt , where wt ∼ MVN(0,Qt) (5.1a)

yt = Ztxt + at + Dtdt + vt , where vt ∼ MVN(0,Rt) (5.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (5.1c)

For this chapter, we do not fit models with inputs (or covariates) thus C, c, D
and d are set to zero. This is the default so we just leave them off the model
specification. See chapter 6 for examples of including inputs in a MARSS
model.

5.1 Fixed and estimated elements in parameter matrices

Suppose one has a MARSS model (Equation 5.1) with the following model
parameter matrices:

[
x1,t
x2,t

]
=

[
b1 0.1
b2 2

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

([
0
0

]
,

[
q1 q3
q3 q2

])




y1,t
y2,t
y3,t


=

[
z1 z2 0
0 z2 3

][
x1,t
x2,t

]
+




0
0
0


+




v1,t
v2,t
v3,t


 , vt ∼ MVN






0
0
0


 ,




r 0 0
0 r 0
0 0 1






x0 ∼ MVN

([
π1
π2

]
,

[
1 0
0 1

])

30 5 MARSS brief examples

Notice how this model mixes fixed values, estimated values and shared values.
The MARSS model specification is a list with the names, Z, A, R, B, U, Q,

x0 and V0. Each element is matrix (class matrix) with the same dimensions as
your model on paper. MARSS distinguishes between the estimated and fixed
values by using list matrices in which you can have numeric and character
elements. Numeric elements are fixed; character elements are names of things
to be estimated. The model above would be specified as:

Z=matrix(list("z1","z2",0,0,"z2",3),3,2)

A=matrix(0,3,1)

R=matrix(list(0),3,3); diag(R)=c("r","r",1)

B=matrix(list("b1",0.1,"b2",2),2,2)

U=matrix(c("u","u"),2,1)

Q=matrix(c("q1","q3","q3","q2"),2,2)

x0=matrix(c("pi1","pi2"),2,1)

V0=diag(1,2)

model.gen=list(Z=Z,A=A,R=R,B=B,U=U,Q=Q,x0=x0,V0=V0)

Notice that there is a one-to-one correspondence between the model list in R
and the model on paper. Fitting the model is then just a matter of passing
the data and model list to the MARSS function:

kemfit = MARSS(dat, model=model.gen)

If you work often with MARSS models then you will probably know
whether prior sensitivity is a problem for your types of MARSS applications. If
so, note that the MARSS package is unusual in that it allows you to set Λ = 0
and treat x0 as an unknown estimated parameter. This eliminates the prior
and thus the prior sensitivity problems—at the cost of adding m parameters.
Depending on your application, you may need to set the initial conditions at
t = 1 instead of the default of t = 0. If you are unsure, look in the index and
read all the sections that talk about troubleshooting priors.

5.2 Different numbers of state processes

Here we show a series of short examples using a dataset on Washington harbor
seals (?harborSealWA), which has five observation time series. The dataset is
a little unusual in that it has four missing years from year 2 to 5. This causes
some interesting issues with prior specification. Before starting the harbor
seal examples, we set up the data, making time go across the columns and
removing the year column:

dat = t(harborSealWA)

dat = dat[2:nrow(dat),] #remove the year row

5.2 Different numbers of state processes 31

5.2.1 One hidden state process for each observation time series

This is the default model for the MARSS() function. In this case, n = m, the
observation errors are i.i.d. and the process errors are independent and have
different variances. The elements in u are all different (meaning, they are not
forced to be the same). Mathematically, the MARSS model being fit is:



x1,t
x2,t
x3,t
x4,t
x5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t



, wt ∼ MVN







0
0
0
0
0



,




q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN







0
0
0
0
0



,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







This is the default model, so you can fit it by simply passing dat to MARSS().

kemfit = MARSS(dat)

Success! abstol and log-log tests passed at 38 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 38 iterations.

Log-likelihood: 19.13428

AIC: -6.268557 AICc: 3.805517

Estimate

R.R(diag) 0.00895

U.U,1 0.06839

U.U,2 0.07163

U.U,3 0.04179

U.U,4 0.05226

U.U,5 -0.00279

Q.Q(1,1) 0.03205

Q.Q(2,2) 0.01098

Q.Q(3,3) 0.00706

Q.Q(4,4) 0.00414

32 5 MARSS brief examples

Q.Q(5,5) 0.05450

x0.x0,1 5.98647

x0.x0,2 6.72487

x0.x0,3 6.66212

x0.x0,4 5.83969

x0.x0,5 6.60482

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The output warns you that the convergence tolerance is high. You can set it
lower by passing in control=list(conv.test.slope.tol=0.1). MARSS() is
automatically creating parameter names since you did not tell it the names.
To see exactly where each parameter element appears in its parameter matrix,
type summary(kemfit$model).

Though it is not necessary to specify the model for this example since it
is the default, here is how you could do so using matrices:

B=Z=diag(1,5)

U=matrix(c("u1","u2","u3","u4","u5"),5,1)

x0=A=matrix(0,5,1)

R=Q=matrix(list(0),5,5)

diag(R)="r"

diag(Q)=c("q1","q2","q3","q4","q5")

Notice that there is a one-to-one relationship between the model on paper and
the model specification for MARSS. Notice also that when a matrix has both
fixed and estimated elements (like R and Q), a list matrix is used to allow you
to specify the fixed elements as numeric and to give the estimated elements
character names.

The default MLE method is the EM algorithm (method="kem"). You can
also use a quasi-Newton method (BFGS) by setting method="BFGS".

kemfit.bfgs = MARSS(dat, method="BFGS")

Success! Converged in 99 iterations.

Function MARSSkf used for likelihood calculation.

MARSS fit is

Estimation method: BFGS

Estimation converged in 99 iterations.

Log-likelihood: 19.13936

AIC: -6.278712 AICc: 3.795362

Estimate

R.R(diag) 0.00849

U.U,1 0.06838

5.2 Different numbers of state processes 33

U.U,2 0.07152

U.U,3 0.04188

U.U,4 0.05233

U.U,5 -0.00271

Q.Q(1,1) 0.03368

Q.Q(2,2) 0.01124

Q.Q(3,3) 0.00722

Q.Q(4,4) 0.00437

Q.Q(5,5) 0.05600

x0.x0,1 5.98437

x0.x0,2 6.72169

x0.x0,3 6.65689

x0.x0,4 5.83527

x0.x0,5 6.60425

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Using the default EM convergence criteria, the EM algorithm stops at a log-
likelihood a little lower than the BFGS algorithm does, but the EM algorithm
was faster, 14.8 times faster, in this case. If you wanted to use the EM fit as
the initial conditions, pass in the inits argument.

kemfit.bfgs2 = MARSS(dat, method="BFGS", inits=kemfit$par)

The BFGS algorithm now converges in 102 iterations. Output not shown.
We mentioned that the missing years from year 2 to 4 creates an interesting

issue with the prior specification. The default behavior of MARSS is to treat
the initial state as at t = 0 instead of t = 1. Usually this doesn’t make a
difference, but for this dataset, if we set the prior at t = 1, the MLE estimate
of R becomes 0. If we estimate x1 as a parameter and let R go to 0, the
likelihood will go to infinity (slowly but surely). This is neither an error nor
a pathology, but is probably not what you would like to have happen. Note
that the “BFGS” algorithm will not find the maximum in this case; it will
stop before R gets small and the likelihood gets very large. However, the EM
algorithm will climb up the peak. You can try it by running the following
code. It will report warnings which you can read about in Appendix B.

kemfit.strange = MARSS(dat, model=list(tinitx=1))

5.2.2 Five correlated hidden state processes

This is the same model except that the hidden states have temporally corre-
lated process errors. Mathematically, this is the model:

34 5 MARSS brief examples




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t



, wt ∼ MVN




0,




q1 c1,2 c1,3 c1,4 c1,5
c1,2 q2 c2,3 c2,4 c2,5
c1,3 c2,3 q3 c3,4 c3,5
c1,4 c2,4 c3,4 q4 c4,5
c1,5 c2,5 c3,5 c4,5 q5










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







B is not shown in the top equation; it is a m×m identity matrix. To fit, use
MARSS() with the model argument set. The output is not shown but it will
appear if you type this on the R command line.

kemfit = MARSS(dat, model=list(Q="unconstrained"))

This shows one of the text shortcuts, "unconstrained", which means estimate
all elements in the matrix. This shortcut can be used for all parameters.

5.2.3 Five equally correlated hidden state processes

This is the same model except that now there is only one process error variance
and one process error covariance. Mathematically, the model is:




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t



, wt ∼ MVN




0,




q c c c c
c q c c c
c c q c c
c c c q c
c c c c q










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







Again B is not shown in the top equation; it is a m×m identity matrix. To
fit, use the following code (output not shown):

kemfit = MARSS(dat, model=list(Q="equalvarcov"))

The shortcut ‘"equalvarcov" means one value on the diagonal and one on
the off-diagonal. It can be used for all square matrices (B,Q,R, and Λ).

5.2 Different numbers of state processes 35

5.2.4 Five hidden state processes with a “north” and a “south” u
and Q elements

Here we fit a model with five independent hidden states where each observa-
tion time series is an independent observation of a different hidden trajectory
but the hidden trajectories 1-3 share their u and Q elements, while hidden
trajectories 4-5 share theirs. This is the model:




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




un
un
un
us
us




+




w1,t
w2,t
w3,t
w4,t
w5,t



, wt ∼ MVN




0,




qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







To fit use the following code, we specify the model argument for u and Q
using list matrices. List matrices allow us to combine numeric and character
values in a matrix. MARSS will interpret the numeric values as fixed, and the
character values as parameters to be estimated. Parameters with the same
name are constrained to be identical.

regions=list("N","N","N","S","S")

U=matrix(regions,5,1)

Q=matrix(list(0),5,5); diag(Q)=regions

kemfit = MARSS(dat, model=list(U=U, Q=Q))

Only u and Q need to be specified since the other parameters are at their
default values.

5.2.5 Fixed observation error variance

Here we fit the same model but with a known observation error variance. This
is the model:

36 5 MARSS brief examples




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




un
un
un
us
us




+




w1,t
w2,t
w3,t
w4,t
w5,t



, wt ∼ MVN




0,




qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t



,

vt ∼ MVN




0,




0.01 0 0 0 0
0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01







To fit this model, use the following code (output not shown):

regions=list("N","N","N","S","S")

U=matrix(regions,5,1)

Q=matrix(list(0),5,5); diag(Q)=regions

R=diag(0.01,5)

kemfit = MARSS(dat, model=list(U=U, Q=Q, R=R))

5.2.6 One hidden state and five i.i.d. observation time series

Instead of five hidden state trajectories, we specify that there is only one and
all the observations are of that one trajectory. Mathematically, the model is:

xt = xt−1 + u + wt , wt ∼ N(0,q)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







Note the default model for R is "diagonal and equal"’ so we can leave this
off when specifying the model argument. To fit, use this code (output not
shown):

5.2 Different numbers of state processes 37

Z=factor(c(1,1,1,1,1))

kemfit = MARSS(dat, model=list(Z=Z))

Success! abstol and log-log tests passed at 28 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 28 iterations.

Log-likelihood: 3.593276

AIC: 8.813447 AICc: 11.13603

Estimate

A.2 0.80153

A.3 0.28245

A.4 -0.54802

A.5 -0.62665

R.R(diag) 0.04523

U.U 0.04759

Q.Q 0.00429

x0.x0 6.39199

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

You can also pass in Z exactly as it is in the equation: Z=matrix(1,5,1), but
the factor shorthand is handy if you need to assign different observed time
series to different underlying state time series (next examples).

5.2.7 One hidden state and five independent observation time
series with different variances

Mathematically, this model is:

xt = xt−1 + u + wt , wt ∼ N(0,q)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5







To fit this model:

38 5 MARSS brief examples

Z=factor(c(1,1,1,1,1))

R="diagonal and unequal"

kemfit = MARSS(dat, model=list(Z=Z, R=R))

Success! abstol and log-log tests passed at 24 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 24 iterations.

Log-likelihood: 16.66199

AIC: -9.323982 AICc: -3.944671

Estimate

A.2 0.79555

A.3 0.27540

A.4 -0.53694

A.5 -0.60874

R.R(1,1) 0.03229

R.R(2,2) 0.03528

R.R(3,3) 0.01352

R.R(4,4) 0.01082

R.R(5,5) 0.19609

U.U 0.05270

Q.Q 0.00604

x0.x0 6.26676

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

5.2.8 Two hidden state processes

Here we fit a model with two hidden states (north and south) where observa-
tion time series 1-3 are for the north and 4-5 are for the south. We make the
hidden state processes independent (meaning a diagonal Q matrix) but with
the same process variance. We make the observation errors i.i.d. (the default)
and the u elements equal. Mathematically, this is the model:

5.3 Time-varying parameters 39

[
xn,t
xs,t

]
=

[
xn,t−1
xs,t−1

]
+

[
u
u

]
+

[
wn,t
ws,t

]
, wt ∼ MVN

(
0,
[

q 0
0 q

])




y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0
1 0
1 0
0 1
0 1




[
xn,t
xs,t

]
+




0
a2
a3
0
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t



, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







To fit the model, use the following code (output not shown):

Z=factor(c("N","N","N","S","S"))

Q="diagonal and equal"

U="equal"

kemfit = MARSS(dat, model=list(Z=Z,Q=Q,U=U))

You can also pass in Z exactly as it is in the equation as a numeric matrix;
the factor notation is a shortcut for making a design matrix (as Z is in
these examples). "equal" is a shortcut meaning all elements in a matrix are
constrained to be equal. It can be used for all column matrices (a, u and
π). "diagonal and equal" can be used as a shortcut for all square matrices
(B,Q,R, and Λ).

5.3 Time-varying parameters

Time-varying parameters are specified by passing in an array of matrices (list,
numeric or character) where the 3rd dimension of the array is time and must
be the same value as the 2nd (time) dimension of the data matrix. No text
shortcuts are allowed for time-varying parameters; you need to use the matrix
form.

For example, let’s say we wanted a different u for the first half versus
second half of the harbor seal time series. We would pass in an array for u as
follows:

U1=matrix("t1",5,1); U2=matrix("t2",5,1)

Ut=array(U2,dim=c(dim(U1),dim(dat)[2]))

Ut[,,1:11]=U1

kemfit.tv=MARSS(dat,model=list(U=Ut,Q="diagonal and equal"))

You can have some elements in a parameter matrix be time-constant and some
be time-varying:

U1=matrix(c(rep("t1",4),"hc"),5,1); U2=matrix(c(rep("t2",4),"hc"),5,1)

Ut=array(U2,dim=c(dim(U1),dim(dat)[2]))

Ut[,,1:11]=U1

kemfit.tv=MARSS(dat,model=list(U=Ut,Q="diagonal and equal"))

40 5 MARSS brief examples

Note that how the time-varying model is specified for MARSS is the same as
you would write the time-varying model on paper in matrix math form.

5.4 Printing and summarizing models and model fits

The package includes print functions for marssm objects (model objects) and
marssMLE objects (fitted models).

print(kemfit)

print(kemfit$model)

This will print the basic information on model structure and model fit that
you have seen in the previous examples.

The package also includes a summary function for models.

summary(kemfit$model)

Output is not shown because it is verbose, but it prints each matrix with the
fixed elements denoted with their values and the free elements denoted by
their names. This is very helpful for confirming exactly what model structure
you are fitting to the data.

The print function will also print various other things like a vector of the
estimated parameters, the estimated states, the state standard errors, etc.,
using the what argument in the print call:

print(kemfit, what="par")

A.2 A.3 A.5 R.R(diag)

0.797864531 0.277434738 -0.070350207 0.034061922

U.U Q.Q(diag) x0.x0,1 x0.x0,2

0.043176408 0.007669608 6.172047633 6.206154697

print(kemfit, what="Q")

[,1] [,2]

[1,] 0.007669608 0.000000000

[2,] 0.000000000 0.007669608

Type ?print.MARSS to see a list of the types of output that can be printed
with a print call. If you want to use the output from print instead of printing,
then assign the print call to a value:

x=print(kemfit, what="states")

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 6.215483 6.329702 6.443921 6.558140 6.672359 6.786578

[2,] 6.249445 6.295591 6.341736 6.387881 6.434027 6.480172

[,7] [,8] [,9] [,10] [,11] [,12]

[1,] 6.904124 6.944425 6.976697 7.050053 7.156567 7.198947

5.5 Confidence intervals on a fitted model 41

[2,] 6.526317 6.572463 6.613358 6.654252 6.695147 6.736042

[,13] [,14] [,15] [,16] [,17] [,18]

[1,] 7.228397 7.293141 7.380439 7.467975 7.488458 7.541996

[2,] 6.776937 6.817832 6.786202 6.764235 6.786233 6.816405

[,19] [,20] [,21] [,22]

[1,] 7.561182 7.524175 7.475514 7.459263

[2,] 6.846578 6.813743 6.791537 6.819195

x

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 6.215483 6.329702 6.443921 6.558140 6.672359 6.786578

[2,] 6.249445 6.295591 6.341736 6.387881 6.434027 6.480172

[,7] [,8] [,9] [,10] [,11] [,12]

[1,] 6.904124 6.944425 6.976697 7.050053 7.156567 7.198947

[2,] 6.526317 6.572463 6.613358 6.654252 6.695147 6.736042

[,13] [,14] [,15] [,16] [,17] [,18]

[1,] 7.228397 7.293141 7.380439 7.467975 7.488458 7.541996

[2,] 6.776937 6.817832 6.786202 6.764235 6.786233 6.816405

[,19] [,20] [,21] [,22]

[1,] 7.561182 7.524175 7.475514 7.459263

[2,] 6.846578 6.813743 6.791537 6.819195

5.5 Confidence intervals on a fitted model

The function MARSSparamCIs() is used to compute confidence intervals.
The function can compute approximate confidence intervals using a nu-
merically estimated Hessian matrix (method="hessian") or via parametric
(method="parametric") or non-parametric (method="innovations") boot-
strapping.

5.5.1 Approximate confidence intervals from a Hessian matrix

The default method for MARSSparamCIs is to use a numerically estimated
Hessian matrix:

kem.with.hess.CIs = MARSSparamCIs(kemfit)

Use print or just type the marssMLE object name to see the confidence
intervals:

print(kem.with.hess.CIs)

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

42 5 MARSS brief examples

Estimation converged in 22 iterations.

Log-likelihood: 7.949236

AIC: 0.1015284 AICc: 2.424109

ML.Est Std.Err low.CI up.CI

A.2 0.79786 0.06152 0.677287 0.9184

A.3 0.27743 0.06254 0.154867 0.4000

A.5 -0.07035 0.08879 -0.244374 0.1037

R.R(diag) 0.03406 0.00647 0.021384 0.0467

U.U 0.04318 0.01438 0.015002 0.0714

Q.Q(diag) 0.00767 0.00415 -0.000462 0.0158

x0.x0,1 6.17205 0.14556 5.886746 6.4573

x0.x0,2 6.20615 0.15708 5.898289 6.5140

CIs calculated at alpha = 0.05 via method=hessian

The Hessian matrix is an estimate of the variance-covariance matrix of the
parameter estimates. For the variances, Q and R, the normality assumption
is not so good because they are constrained to be positive. Thus you may see
lower confidence intervals on variances that are negative using the Hessian
approximation.

5.5.2 Confidence intervals from a parametric bootstrap

Use method="parametric" to use a parametric bootstrap to compute confi-
dence intervals and bias using a parametric bootstrap.

kem.w.boot.CIs=MARSSparamCIs(kemfit,method="parametric",nboot=10)

#nboot should be more like 1000, but set low for example's sake

print(kem.w.boot.CIs)

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 22 iterations.

Log-likelihood: 7.949236

AIC: 0.1015284 AICc: 2.424109

ML.Est Std.Err low.CI up.CI Est.Bias

A.2 0.79786 0.04378 0.7467 0.8806 0.001085

A.3 0.27743 0.08297 0.1454 0.3868 -0.005810

A.5 -0.07035 0.15252 -0.3566 0.0921 0.012254

R.R(diag) 0.03406 0.00733 0.0200 0.0442 0.001701

U.U 0.04318 0.01344 0.0229 0.0567 0.006431

Q.Q(diag) 0.00767 0.00503 0.0000 0.0128 0.003961

x0.x0,1 6.17205 0.35380 5.8529 6.8989 -0.061042

5.6 Vectors of just the estimated parameters 43

x0.x0,2 6.20615 0.32335 5.7319 6.6962 0.000249

Unbias.Est

A.2 0.7989

A.3 0.2716

A.5 -0.0581

R.R(diag) 0.0358

U.U 0.0496

Q.Q(diag) 0.0116

x0.x0,1 6.1110

x0.x0,2 6.2064

CIs calculated at alpha = 0.05 via method=parametric

Bias calculated via parametric bootstrapping with 10 bootstraps.

5.6 Vectors of just the estimated parameters

Often it is useful to have a vector of the estimated parameters. For example,
if you are writing a call to optim, you will need a vector of just the estimated
parameters. You can use the function MARSSvectorizeparam or print with
what="par":

parvec=MARSSvectorizeparam(kemfit)

parvec=print(kemfit, what="par", silent=TRUE)

parvec

A.2 A.3 A.5 R.R(diag)

0.797864531 0.277434738 -0.070350207 0.034061922

U.U Q.Q(diag) x0.x0,1 x0.x0,2

0.043176408 0.007669608 6.172047633 6.206154697

If you want to replace the estimated parameter values with different values,
you can use MARSSvectorizeparam:

parvec.new=parvec

parvec.new[6]=parvec.new[6]+0.02

kem.new=MARSSvectorizeparam(kemfit, parvec.new)

Then you might want to find out the likelihood of the data using those new pa-
rameter values. You compute that with the Kalman filter function MARSSkf(),
sending it the MLE object, kem.new.

kf=MARSSkf(kem.new)

kf$logLik

[1] 4.525431

44 5 MARSS brief examples

5.7 Degenerate variance estimates

If your data are short relative to the number of parameters you are estimating,
then you are liable to find that some of the variance elements are degenerate
(equal to zero). Try the following:

dat.short = dat[1:4,1:10]

kem.degen = MARSS(dat.short,control=list(allow.degen=FALSE))

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: abstol convergence only no log-log convergence.

maxit reached at 500 iter before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: 11.67854

AIC: 2.642914 AICc: 63.30958

Estimate

R.R(diag) 1.22e-02

U.U,1 9.79e-02

U.U,2 1.09e-01

U.U,3 9.28e-02

U.U,4 1.11e-01

Q.Q(1,1) 1.89e-02

Q.Q(2,2) 1.03e-05

Q.Q(3,3) 8.24e-06

Q.Q(4,4) 3.05e-05

x0.x0,1 5.96e+00

x0.x0,2 6.73e+00

x0.x0,3 6.60e+00

x0.x0,4 5.71e+00

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the Q.Q(2,2) parameter value has not converged.

Warning: the Q.Q(3,3) parameter value has not converged.

Warning: the Q.Q(4,4) parameter value has not converged.

This will print a warning that the maximum number of iterations was reached
before convergence of some of the Q parameters. It might be that if you just

5.7 Degenerate variance estimates 45

ran a few more iterations the variances will converge. So first try setting
control$maxit higher.

kem.degen2 = MARSS(dat.short, control=list(maxit=1000,

allow.degen=FALSE), silent=2)

Output not shown, but if you run the code, you will see that some of the Q
terms are still not converging. MARSS can detect if a variance is going to zero
and it will try zero to see if that has a higher likelihood. Try removing the
allow.degen=FALSE which was turning off this feature.

kem.short = MARSS(dat.short)

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: abstol convergence only no log-log convergence.

maxit reached at 500 iter before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: 11.6907

AIC: 2.6186 AICc: 63.28527

Estimate

R.R(diag) 1.22e-02

U.U,1 9.79e-02

U.U,2 1.09e-01

U.U,3 9.24e-02

U.U,4 1.11e-01

Q.Q(1,1) 1.89e-02

Q.Q(2,2) 1.03e-05

Q.Q(3,3) 0.00e+00

Q.Q(4,4) 3.04e-05

x0.x0,1 5.96e+00

x0.x0,2 6.73e+00

x0.x0,3 6.60e+00

x0.x0,4 5.71e+00

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the Q.Q(2,2) parameter value has not converged.

Warning: the Q.Q(4,4) parameter value has not converged.

46 5 MARSS brief examples

So three of the four Q elements are going to zero. This often happens when you
do not have enough data to estimate both observation and process variance.

Perhaps we are trying to estimate too many variances. We can try using
only one variance value in Q and one u value in u:

kem.small=MARSS(dat.short,model=list(Q="diagonal and equal",

U="equal"))

Success! abstol and log-log tests passed at 164 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 164 iterations.

Log-likelihood: 11.19

AIC: -8.379994 AICc: 0.9533396

Estimate

R.R(diag) 0.0191

U.U 0.1027

Q.Q(diag) 0.0000

x0.x0,1 6.0609

x0.x0,2 6.7698

x0.x0,3 6.5307

x0.x0,4 5.7451

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

No, there are simply not enough data to estimate both process and observation
variances.

5.8 Bootstrap parameter estimates

You can easily produce bootstrap parameter estimates from a fitted model
using MARSSboot():

boot.params = MARSSboot(kemfit,

nboot=20, output="parameters", sim="parametric")$boot.params

|2% |20% |40% |60% |80% |100%

Progress: ||

Use silent=TRUE to stop the progress bar from printing. The function will also
produce parameter sets generated using a Hessian matrix (sim="hessian")
or a non-parametric bootstrap (sim="innovations").

5.9 Random initial conditions 47

5.9 Random initial conditions

You can use random initial conditions by passing in MCInit=TRUE:

Z.model = factor(c(1,1,2,2,2))

U.model = "equal"

Q.model = "diagonal and unequal"

R.model = "diagonal and equal"

model.list=list(Z=Z.model, R=R.model, U=U.model, Q=Q.model)

#Set the numInits very low so the example runs quickly

cntl.list=list(MCInit=TRUE,numInits=10)

kem.mcinit = MARSS(dat, model=model.list, control=cntl.list)

> Starting Monte Carlo Initializations

|2% |20% |40% |60% |80% |100%

Progress: ||

Success! abstol and log-log tests passed at 26 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Monte Carlo initialization with random starts.

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 26 iterations.

Log-likelihood: 12.0262

AIC: -6.052405 AICc: -3.101586

Estimate

A.2 0.7988

A.4 -0.7862

A.5 -0.8550

R.R(diag) 0.0289

U.U 0.0419

Q.Q(1,1) 0.0116

Q.Q(2,2) 0.0044

x0.x0,1 6.0513

x0.x0,2 6.8913

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

48 5 MARSS brief examples

5.10 Data simulation

5.10.1 Simulated data from a fitted MARSS model

Data can be simulated from marssMLE object using MARSSsimulate().

sim.data=MARSSsimulate(kemfit, nsim=2, tSteps=100)$sim.data

Then you might want to estimate parameters from that simulated data. Above
we created two simulated datasets (nsim=2). We will fit to the first one. Here
the default settings for MARSS() are used.

kem.sim.1 = MARSS(sim.data[,,1])

Then we might like to see the likelihood of the second set of simulated data
under the model fit to the first set of data. We do that with the Kalman
filter function. This function takes a marssMLE object (as output by say the
MARSS function), and we have to replace the data in kem.sim.1 with the
second set of simulated data.

kem.sim.2 = kem.sim.1

kem.sim.2$model$data = sim.data[,,2]

MARSSkf(kem.sim.2)$logLik

[1] 1.985441

5.11 Bootstrap AIC

The function MARSSaic() computes a bootstrap AIC for model selection pur-
poses. Use output="AICbp" to produce a parameter bootstrap. Use output="AICbb"
to produce a non-parameter bootstrap AIC.

kemfit.with.AICb = MARSSaic(kemfit, output = "AICbp",

Options = list(nboot = 10, silent=TRUE))

#nboot should be more like 1000, but set low here for example sake

print(kemfit.with.AICb)

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 22 iterations.

Log-likelihood: 7.949236

AIC: 0.1015284 AICc: 2.424109 AICbp(param): 417.9131

Estimate

A.2 0.79786

A.3 0.27743

5.11 Bootstrap AIC 49

A.5 -0.07035

R.R(diag) 0.03406

U.U 0.04318

Q.Q(diag) 0.00767

x0.x0,1 6.17205

x0.x0,2 6.20615

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We used only 10 bootstraps so the AICb estimate will be terrible, but this
shows you how to compute AICb with the MARSS package.

6

Incorporating covariates into MARSS models

6.1 Covariates as inputs

Covariates are often included as inputs that are known without error. A
MARSS model with covariate effects in both the process and observation
components is usually written as:

xt = Btxt−1 + ut + Ctct + wt , where wt ∼ MVN(0,Qt)

yt = Ztxt + at + Dtdt + vt , where vt ∼ MVN(0,Rt)
(6.1)

where ct is the p× 1 vector of covariates (e.g., temperature, rainfall) which
affect the states and dt is a q× 1 vector of covariates (potentially the same
at ct) which affect the observations1. Ct is an m× p matrix of coefficients
relating the effects of ct to the m×1 state vector xt , and Dt is an n×q matrix
of coefficients relating the effects of dt to the n× 1 observation vector yt .
An example is Equations 6.3, 6.4 in Shumway and Stoffer (2006), where ft ≡
ct in their equation and u and a do not appear. A regression model with
autoregressive errors (Harvey and Phillips, 1979) also takes this form.

In MARSS using form="marxss" (the default), one can fit this model by
simply passing in model$c and/or model$d in the MARSS() call as a p×T
or q×T matrix, respectively. The form for C and D is similarly specified by
passing in model$C and/or model$D

6.1.1 Examples using plankton data

Here we show some examples using the Lake Washington plankton data set
and covariates in that dataset. First, we set up the data and z-score the
data. We use 1972 onward to remove the high phosporous years before sewage
management reduced nutrient loading of the lake.

1 One must be careful here that the model is identifiable.

52 6 Covariates

Set up some data. 1972 onward

years=(1:396)[lakeWAplankton[,"Year"]>=1972]

dat = t(lakeWAplankton[years,c("Greens", "Bluegreens")])

#z.score the data

the.mean=apply(dat,1,mean,na.rm=TRUE)

the.sigma=sqrt(apply(dat,1,var,na.rm=TRUE))

dat=(dat-the.mean)*(1/the.sigma)

Next we set up the covariate data. There is a strong non-linear month
effect in the data and we want to include that in the model. All the covariates
have been logged and we z-score them to standardize and remove the mean.

temp.offset=tp.offset=1

month=lakeWAplankton[years,"Month"]

covariates = rbind(lakeWAplankton[years-temp.offset,"Temp"],

lakeWAplankton[years-tp.offset,"TP"],

month, month^2, month^3)

#if you put the rownames on, MARSS can come up with automatic

naming for the D and C matrices

rownames(covariates)=c("Temp","TP","mon","mon^2","mon^3")

#z.score the covariates; they are already log-transformed

the.mean=apply(covariates,1,mean,na.rm=TRUE)

the.sigma=sqrt(apply(covariates,1,var,na.rm=TRUE))

covariates=(covariates-the.mean)*(1/the.sigma)

We will start with a multivariate regression by removing the state process
and just modeling the observed states as temporally independent:

yt = a + Dtdt + vt , where vt ∼ MVN(0,R) (6.2)

The a are the intercepts and the D are the effects.
Let’s fit this with MARSS. The x part of the model is irrelevent so we

want to fix the parameters in that part of the model. We won’t set B = 0 or
Z = 0 since that might cause numerical issues for the Kalman filter. Instead
we fix them as identity matrices and fix x0 = 0 so that xt = 0.

Q=U=x0="zero"; B=Z="identity"

d=covariates

A="zero"

D="unconstrained"

model.list=list(B=B,U=U,Q=Q,Z=Z,A=A,D=D,d=d,x0=x0)

kem = MARSS(dat, model=model.list)

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

6.1 Covariates as inputs 53

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -683.9372

AIC: 1389.874 AICc: 1390.363

Estimate

A.D(Greens,Temp) -0.0375

A.D(Bluegreens,Temp) -0.0493

A.D(Greens,TP) 0.0269

A.D(Bluegreens,TP) 0.0261

A.D(Greens,mon) 0.4408

A.D(Bluegreens,mon) 0.9431

A.D(Greens,mon^2) -0.4791

A.D(Bluegreens,mon^2) -0.4336

A.D(Greens,mon^3) -0.1994

A.D(Bluegreens,mon^3) -0.5828

R.R(diag) 0.6978

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We set A="zero" since the data and covariates are demeaned. Of course, one
can do multiple regression in R using, say, lm(), and that would about 1000x
faster. The EM algorithm is over-kill here, but it is shown for comparison.

We can put a twist on this and have autoregressive errors. There is still no
state process in our model but instead of having i.i.d. errors in the observation
process, we’ll have autoregressive errors.

xt = Bxt−1 + wt , where wt ∼ MVN(0,Q)

yt = Dtdt + xt + vt , where vt ∼ MVN(0,R)
(6.3)

Our xt are the errors for the observation model. We are modeling them as an
autoregressive process, the x equation. We drop the vt (set R = 0) since the xt
are the errors now. As usual, we’ve left the intercepts (a and u) off since the
data and covariates are all demeaned.

Here’s how we fit this model in MARSS:

Q="unconstrained"

B="diagonal and unequal"

A=U=x0="zero"

R="diagonal and equal"

d=covariates

D="unconstrained"

model.list=list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,D=D,d=d,x0=x0)

kem = MARSS(dat, model=model.list)

54 6 Covariates

Success! abstol and log-log tests passed at 228 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 228 iterations.

Log-likelihood: -655.2385

AIC: 1342.477 AICc: 1343.494

Estimate

A.D(Greens,Temp) 0.0334

A.D(Bluegreens,Temp) -0.1366

A.D(Greens,TP) 0.0440

A.D(Bluegreens,TP) 0.0253

A.D(Greens,mon) 0.3651

A.D(Bluegreens,mon) 1.1633

A.D(Greens,mon^2) -0.4442

A.D(Bluegreens,mon^2) -0.4453

A.D(Greens,mon^3) -0.1797

A.D(Bluegreens,mon^3) -0.7579

R.R(diag) 0.1528

B.B(1,1) 0.4626

B.B(2,2) 0.2869

Q.Q(1,1) 0.4645

Q.Q(2,1) 0.0875

Q.Q(2,2) 0.4674

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

You can try setting B to identity and MARSS will fit a model with non-mean-
reverting autoregressive errors to the data. It is not done here since it turns
out that that is not a very good model and it takes a long time to fit. If you
try it, you’ll see the Q gets small meaning that the x part is getting removed
from the model.

Now let’s model the data as an autoregressive process observed with no
error and incorporate the covariates in the process model. Now we have left
the realm of multiple regression. The x part represents our model of the data
(in this case plankton species). How is this different from the autoregressive
observation errors? Well, we are modeling our data as autoregressive so data at
t−1 affects the data at t. Population abundances are inherently autoregressive
so this model is a bit closer to the underlying mechanism generating the data.
Here is our new process model for plankton abundance.

6.1 Covariates as inputs 55

xt = xt−1 + Ctct + wt , where wt ∼ MVN(0,Q) (6.4)

We can fit this as follows:

R=A=U="zero"; B=Z="identity"

Q="equalvarcov"

C="unconstrained"

model.list=list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,C=C,c=covariates)

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -772.6659

AIC: 1573.332 AICc: 1574.114

Estimate

U.C(Greens,Temp) -0.2256

U.C(Bluegreens,Temp) -0.2817

U.C(Greens,TP) 0.0748

U.C(Bluegreens,TP) 0.0145

U.C(Greens,mon) 0.0498

U.C(Bluegreens,mon) 0.3189

U.C(Greens,mon^2) -0.2612

U.C(Bluegreens,mon^2) -0.3604

U.C(Greens,mon^3) 0.0118

U.C(Bluegreens,mon^3) -0.2546

Q.Q(diag) 0.9716

Q.Q(offdiag) 0.1336

x0.x0,1 -0.1434

x0.x0,2 0.1967

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Now it looks like temperature has a strong negative effect on algae? Also our
log-likelihood dropped a lot. Well, the data do not look at all like a random
walk (meaning B = 1) model which we can see by plotting the data.

matplot(t(dat))

The data are clearly fluctuating about some mean and so a random walk
(which is non-stationary, i.e. B = 1) is a bad model for the data. Let’s switch

56 6 Covariates

to a better autoregressive model, a mean-reverting model. To do this, we will
allow the diagonal elements of B to be something other than 1.

model.list$B="diagonal and unequal"

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -651.8249

AIC: 1335.65 AICc: 1336.667

Estimate

B.B(1,1) 0.3854

B.B(2,2) 0.2144

U.C(Greens,Temp) -0.1051

U.C(Bluegreens,Temp) -0.0905

U.C(Greens,TP) 0.0467

U.C(Bluegreens,TP) 0.0261

U.C(Greens,mon) 0.2788

U.C(Bluegreens,mon) 0.7892

U.C(Greens,mon^2) -0.3970

U.C(Bluegreens,mon^2) -0.4212

U.C(Greens,mon^3) -0.1067

U.C(Bluegreens,mon^3) -0.4924

Q.Q(diag) 0.6266

Q.Q(offdiag) 0.0824

x0.x0,1 0.8645

x0.x0,2 3.4007

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the log-likelihood goes up quite a bit that means our model can
actually fit the data, which is good.

With this model, we are estimating x0. If we set model$tinitx=1, we will
get a error message that R diagonals are equal to 0 and we need to fix x0.
Since R = 0, if we set the initial states at t = 1 they are fully determined by
the data.

x0=dat[,1,drop=FALSE]

model.list$tinitx=1

6.1 Covariates as inputs 57

model.list$x0=x0

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -652.2993

AIC: 1332.599 AICc: 1333.381

Estimate

B.B(1,1) 0.3854

B.B(2,2) 0.2144

U.C(Greens,Temp) -0.1051

U.C(Bluegreens,Temp) -0.0905

U.C(Greens,TP) 0.0467

U.C(Bluegreens,TP) 0.0261

U.C(Greens,mon) 0.2788

U.C(Bluegreens,mon) 0.7892

U.C(Greens,mon^2) -0.3970

U.C(Bluegreens,mon^2) -0.4212

U.C(Greens,mon^3) -0.1067

U.C(Bluegreens,mon^3) -0.4924

Q.Q(diag) 0.6289

Q.Q(offdiag) 0.0827

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

The MARSS package is really designed for state-space models where you
have both process and observation variability. Let’s add that to the model:

xt = Bxt−1 + Ctct + wt , where wt ∼ MVN(0,Q)

yt = xt−1 + vt , where vt ∼ MVN(0,R)
(6.5)

Here’s how we fit this with MARSS:

model.list$R="diagonal and equal"

kem = MARSS(dat, model=model.list)

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is

58 6 Covariates

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: abstol convergence only no log-log convergence.

maxit reached at 500 iter before log-log convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: -649.6391

AIC: 1329.278 AICc: 1330.174

Estimate

R.R(diag) 0.1436

B.B(1,1) 0.4743

B.B(2,2) 0.2858

U.C(Greens,Temp) -0.1263

U.C(Bluegreens,Temp) -0.0805

U.C(Greens,TP) 0.0436

U.C(Bluegreens,TP) 0.0269

U.C(Greens,mon) 0.2301

U.C(Bluegreens,mon) 0.6831

U.C(Greens,mon^2) -0.3773

U.C(Bluegreens,mon^2) -0.4102

U.C(Greens,mon^3) -0.0675

U.C(Bluegreens,mon^3) -0.4208

Q.Q(diag) 0.4647

Q.Q(offdiag) 0.0789

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the R.R(diag) parameter value has not converged.

Note, our estimates of the effect of temperature and total phosporous are
not that different than what you get from a simple multiple regression (our
first example). This might be because the autoregressive component is small,
meaning the estimated diagonals on the B matrix are small.

6.2 Covariates with missing values or observation error

The specific formulation of Equation 6.1 creates restrictions on the assump-
tions regarding the covariate data. You have to assume that your covariate
data has no error, which is probably not true. You cannot have missing values
in your covariate data, again unlikely. You cannot combine instrument time
series; for example, if you have two temperature recorders with different error

6.2 Covariates with missing values or observation error 59

rates and biases. Also, what if you have one noisy temperature recorder in the
first part of your time series and then you switch to a much better recorder
in the second half of your time series? All these problems require pre-analysis
massaging of the covariate data, leaving out noisy and gappy covariate data,
and making what can feel like arbitrary choices about which covariate time
series to include.

To circumvent these potential problems and allow more flexibility in how
we incorporate covariate data, one can instead treat the covariates as compo-
nents of an auto-regressive process by including them in both the process and
observation models. Beginning with the process equation, we can write

[
x(v)

x(c)

]

t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]

t−1
+

[
u(v)

u(c)

]
+ wt , wt ∼ MVN

(
0,
[

Q(v) 0
0 Q(c)

])

(6.6)
The elements with superscript (v) are for the k variate states and those with
superscript (c) are for the q covariate states. The dimension of x(c) is q×1 and
q is not necessarily equal to p, the number of covariate observation time series
in your dataset. Imagine, for example, that you have two temperature sensors
and you are combining these data. Then you have two covariate observation
time series (p = 2) but only one underlying covariate state time series (q = 1).

The matrix C is dimension k×q, and B(c) and Q(c) are dimension q×q. The
dimension2 of x(v) is k×1, and B(v) and Q(v) are dimension k× k.

Next, we can write the observation equation in an analogous manner, such
that
[

y(v)

y(c)

]

t
=

[
Z(v) D

0 Z(c)

][
x(v)

x(c)

]

t
+

[
a(v)

a(c)

]
+ vt , vt ∼ MVN

(
0,
[

R(v) 0
0 R(c)

])
(6.7)

The dimension of y(c) is p×1, where p is the number of covariate observation
time series in your dataset. The dimension of y(v) is l×1, where l is the number
of variate observation time series in your dataset. The total dimension of y
is l + p. The matrix D is dimension l× q, Z(c) is dimension p× q, and R(c)

are dimension p× p. The dimension of Z(v) is dimension l× k, and R(v) are
dimension l× l.

The D matrix would presumably have a number of all zero rows in it,
as would the C matrix. The covariates that affect the states would often be
different than the covariates that affect the observations. For example, mean
annual temperature would affect population growth rates for many species
while having little or no affect on observability, and turbidity might strongly
affect observability in many types of aquatic, say, surveys but have little affect
on population growth rate.

2 The dimension of x is always denoted m. If your process model includes only vari-
ates, then k = m, but now your process model includes k variates and q covariate
states so m = k + q.

60 6 Covariates

Our MARSS model with covariates now looks on the surface like a regular
MARSS model:

xt = Bxt−1 + u + wt , where wt ∼ MVN(0,Q)

yt = Zxt + a + vt , where vt ∼ MVN(0,R)
(6.8)

with the xt , yt and parameter matrices redefined as in Equations 6.6 and 6.7:

x =

[
x(v)

x(c)

]
B =

[
B(v) C

0 B(c)

]
u =

[
u(v)

u(c)

]
Q =

[
Q(v) 0

0 Q(c)

]

y =

[
y(v)

y(c)

]
Z =

[
Z(v) D

0 Z(c)

]
a =

[
a(v)

a(c)

]
R =

[
R(v) 0

0 R(c)

] (6.9)

Note Q and R are written as diagonal matrices, but you could allow covari-
ances if that made sense. u and a are column vectors here. We can fit the model
(Equation 6.8) as usual using the MARSS() function. Note that the likelihood
returned from MARSS will include the likelihood of the covariates under their
assumed or estimated state model.

The log-likelihood that is returned by MARSS will include the log-
likelihood of the covariates under the covariate state model. If you want only
the the log-likelihood of the non-covariate data, you will need to substract off
the log-likelihood of the covariate model:

x(c)
t = B(c)x(c)

t−1 + u(c) + wt , where wt ∼ MVN(0,Q(c))

y(c)
t = Z(c)x(c)

t + a(c) + vt , where vt ∼ MVN(0,R(c))
(6.10)

So if your augmented model (Equation 6.8 with terms defined as in Equa-
tion 6.9), and easy way to get the log-likelihood for the covariate data only is
to pass in missing values for the non-covariate data.

y.aug=rbind(data,covariates)

fit.aug=MARSS(y.aug, model=model.aug)

#fit.aug is now the MLE object that can be passed to MARSSkf

#you need to make a version with the non-covariate data filled with NAs

fit.cov=fit.aug; fit.cov$model$data[1:dim(data)[1],]=NA

extra.LL=MARSSkf(fit.cov)$logLik

Also when you fit the augmented model, the estimates of C and B(c) are
affected by the non-covariate data since the model for both the non-covariate
and covariate data are estimated simultaneously and are not independent
(since the covariate states affect the non-covariates states). If you want the
covariate model to be unaffected by the non-covariate data, you can fit the
covariate model separately and use the estimates for B(c) and Q(c) as fixed
values in your augmented model.

7

Lag-p models with MARSS

7.1 Background

Many types of time-series models, for example AR(p), ARMA(p,q), and AR-
MAX(p,q), can be written in state-space form specifically MARSS(1) (see sec-
tion 11.3.2 in (Tsay, 2010)). Writing these models in state-space form allows
one to take advantage of the fitting algorithms for MARSS(1) models1. When
written in state-space form, it does not necessarily mean that the process is
observed with error, i.e. the ARMA(p,q) is not overlaid with an observation
model. Rather the original model, with no observation process, is rewritten in
the state-space form to facilitate statistical analysis.

7.2 MAR(2) models

The MARSS model (Equation 1.1) is written such that xt is only affected
by xt−1. This is called a lag-1 model. A model in which lags up to time p
are included allows that xt may be affected by xt−p. These are called lag-p
models. A MARSS model with p lags in the process model can be equivalently
rewritten as a MARSS(1) model by redefining the x state vector.

Here is a MARSS lag-2 model:

x′t = B1x′t−1 + B2x′t−2 + u + wt , where wt ∼ MVN(0,Q) (7.1)

We rewrite this as lag-1 by defining xt =

[
x′t

x′t−1

]
:

1 There are many packages for fitting AR-p and ARMA(p,q) models. If you are
only interested in univariate models then I suggest looking into packages that
specialize in fitting ARMA models to univariate data. The forecast package in R
is a good place to start but others can be found on the R time-series review. This
chapter is focused on fitting such models by converting to a MARSS.

62 7 Models with lags

[
x′t

x′t−1

]
=

[
B1 B2
Im 0

][
x′t−1
x′t−2

]

t−1
+

[
u
0

]
+ wt , wt ∼ MVN

(
0,
[

Q 0
0 0

])

[
x′0

x′−1

]
∼ MVN(π,Λ)

(7.2)

Here is an example of fitting a univariate AR lag-2 model to AR lag-2
data. First, let’s generate some simulated AR lag-2 data:

TT=50

true.2=c(r=0,b1=-1.5,b2=-0.75,q=1)

temp=arima.sim(n=TT,list(ar=true.2[2:3]),sd=sqrt(true.2[4]))

sim.ar2=matrix(temp,nrow=1)

Next, we write the AR lag-2 model (Equation 7.2) as a MARSS model in R :

Z=matrix(c(1,0),1,2)

B=matrix(list("b1",1,"b2",0),2,2)

U=matrix(0,2,1)

Q=matrix(list("q",0,0,0),2,2)

A=matrix(0,1,1)

R=matrix(0,1,1)

pi=matrix(sim.ar2[2:1],2,1)

V=matrix(0,2,2)

model.list.2=list(Z=Z,B=B,U=U,Q=Q,A=A,R=R,x0=pi,V0=V,tinitx=1)

Notice that we do not need to estimate π for x1 since we are setting π =

[
x2
x1

]
,

using only data starting at x2, and setting R = 0. Thus x1, and by extension
the first element of π, is known the data.

Then we can fit the AR-2 model to this simulated data. We pass in good
initial conditions so it does not take quite so long to run.

init.list=list(Q=matrix(1,1,1),B=matrix(1,2,1))

ar2=MARSS(sim.ar2[2:TT],model=model.list.2,inits=init.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -67.71901

AIC: 141.438 AICc: 141.9714

Estimate

B.b1 -1.430

7.2 MAR(2) models 63

B.b2 -0.690

Q.q 0.947

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

print(cbind(true=true.2[2:4],estimated=print(ar2,what="par",silent=TRUE)))

true estimated

b1 -1.50 -1.4297848

b2 -0.75 -0.6902513

q 1.00 0.9469199

Missing values in the data are fine. Let’s make half the data missing:

TT=50

gappy.data=sim.ar2[2:TT]

gappy.data[floor(runif(TT/2,1,TT))]=NA

ar2.gappy=MARSS(gappy.data,model=model.list.2,inits=init.list)

Success! abstol and log-log tests passed at 21 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 21 iterations.

Log-likelihood: -50.40136

AIC: 106.8027 AICc: 107.7258

Estimate

B.b1 -1.455

B.b2 -0.717

Q.q 0.878

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We can also fit a MAR-2 model, a multivariate autoregressive model. Let’s
make some simulated data of two realizations of the same AR-2 process:

TT=50

true.2=c(r=0,b1=-1.5,b2=-0.75,q=1)

temp1=arima.sim(n=TT,list(ar=true.2[2:3]),sd=sqrt(true.2[4]))

temp2=arima.sim(n=TT,list(ar=true.2[2:3]),sd=sqrt(true.2[4]))

sim.mar2=rbind(temp1,temp2)

64 7 Models with lags

We want to fit with a MAR-2 model to allow us to use both datasets
together to estimate the AR-2 parameters. We need to set up the multivariate
model (Equation 7.2):

Z=matrix(c(1,0,0,1,0,0,0,0),2,4)

B1=matrix(list(0),2,2); diag(B1)="b1"

B2=matrix(list(0),2,2); diag(B2)="b2"

B=matrix(list(0),4,4)

B[1:2,1:2]=B1; B[1:2,3:4]=B2; B[3:4,1:2]=diag(1,2)

U=matrix(0,4,1)

Q=matrix(list(0),4,4)

Q[1,1]="q"; Q[2,2]="q"

A=matrix(0,2,1)

R=matrix(0,2,2)

pi=matrix(c(sim.mar2[,2],sim.mar2[,1]),4,1)

V=matrix(0,4,4)

model.list.2m=list(Z=Z,B=B,U=U,Q=Q,A=A,R=R,x0=pi,V0=V,tinitx=1)

We then fit the model as usual:

init.list=list(Q=matrix(1,1,1),B=matrix(1,2,1))

mar2=MARSS(sim.mar2[,2:TT],model=model.list.2m,inits=init.list)

Then we can compare how using two time series improves the fit versus using
only one alone:

model.list.2$x0=matrix(sim.mar2[1,2:1],2,1)

mar2a=MARSS(sim.mar2[1,2:TT],model=model.list.2,inits=init.list)

model.list.2$x0=matrix(sim.mar2[2,2:1],2,1)

mar2b=MARSS(sim.mar2[2,2:TT],model=model.list.2,inits=init.list)

true est.mar2 est.mar2a est.mar2b

b1 -1.50 -1.6739757 -1.7125776 -1.4358163

b2 -0.75 -0.8457872 -0.8995410 -0.5476805

q 1.00 0.7428008 0.8972872 0.5019915

7.3 MAR(p) models

A MAR lag-p model would be:

x′t = B1x′t−1 + B2x′t−2 + · · ·+ Bpx′t−p + u′+ w′t , where w′t ∼ MVN(0,Q′)

and the lag-1 version is

xt = Bxt−1 + u + wt , where wt ∼ MVN(0,Q)

where

7.3 MAR(p) models 65

xt =




x′t
x′t−1

...
x′t−p


 ,B =




B1 B2 . . . Bp
Im 0 . . . 0
0 Im . . . 0

0 0
. . .

...
0 0 . . . 0



,u =




u′
0
...
0


 ,Q =




Q′ 0 . . . 0
0 0 . . . 0

0 0
. . .

...
0 0 . . . 0


 (7.3)

Here’s an example of fitting a univariate AR-3 with MARSS. We need
more data to estimate an AR-3, so we up the length of data.

TT=100

temp=arima.sim(n=TT,list(ar=c(-1.5,-.75, .05)),sd=1)

sim.ar3=matrix(temp,nrow=1)

We write the AR lag-3 model as a MARSS model in R :

Z=matrix(c(1,0,0),1,3)

B=matrix(list("b.1",1,0,"b.2",0,1,"b.3",0,0),3,3)

U=matrix(0,3,1)

Q=matrix(list(0),3,3); Q[1,1]="q.1"

A=matrix(0,1,1)

R=matrix(0,1,1)

pi=matrix(sim.ar3[3:1],3,1)

V=matrix(0,3,3)

model.list=list(Z=Z,B=B,U=U,Q=Q,A=A,R=R,x0=pi,V0=V,tinitx=1)

init.list=list(Q=matrix(1,1,1),B=matrix(1,3,1))

ar3=MARSS(sim.ar3[3:TT],model=model.list,inits=init.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -136.0366

AIC: 280.0732 AICc: 280.5033

Estimate

B.b.1 -1.546

B.b.2 -0.776

B.b.3 0.098

Q.q.1 0.949

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

66 7 Models with lags

7.4 MARSS(p): models with observation error

We can estimate MARSS(p) models, but the difficulty is specifying the initial
state condition. Our xt0 involves xt , xt−1, However, we do not know the
variance covariance structure for them. Specifying Vt0 = 0 and estimating xt0
does not seem to be very robust—meaning the EM algorithm runs into nu-
merical problems. But if we have lots of data and fix xt0 , we can still recover
B and Q, at least for the univariate case. x0 is set to the mean of the data and
we hope the data are long enough so that the estimates are insensitive to x0.

TT=100

true.2ss=c(r=.5,b1=-1.5,b2=-0.75,q=.1)

temp=arima.sim(n=TT,list(ar=true.2ss[2:3]),sd=sqrt(true.2ss[4]))

sim.ar=matrix(temp,nrow=1)

model.list.2ss=model.list.2

noise=rnorm(TT-1,0,sqrt(true.2ss[1]))

noisy.data=sim.ar[2:TT]+noise

model.list.2ss$R=matrix("r")

model.list.2ss$x0=matrix(mean(noisy.data),2,1)

model.list.2ss$tinitx=0

init.list=list(Q=matrix(.01,1,1),B=matrix(1,2,1))

ar2ss=MARSS(noisy.data[2:TT],model=model.list.2ss,inits=init.list)

Success! abstol and log-log tests passed at 90 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 90 iterations.

Log-likelihood: -122.1285

AIC: 252.257 AICc: 252.6872

Estimate

R.r 0.4735

B.b1 -1.6331

B.b2 -0.8881

Q.q 0.0348

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We can compare the results to modeling the data as if there is no obser-
vation error, and we see that that assumption leads to poor B estimates:

7.4 MARSS(p): models with observation error 67

model.list.2ss$R=matrix(0)

ar2ss2=MARSS(noisy.data[2:TT],model=model.list.2ss,inits=init.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -129.1398

AIC: 264.2795 AICc: 264.5348

Estimate

B.b1 -0.4189

B.b2 0.0904

Q.q 0.8168

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

print(cbind(true=true.2ss,

est.no.noise=c(NA,print(ar2ss2,what="par",silent=TRUE)),

est.noisy=print(ar2ss,what="par",silent=TRUE)))

true est.no.noise est.noisy

r 0.50 NA 0.4735465

b1 -1.50 -0.41887670 -1.6330834

b2 -0.75 0.09039969 -0.8880750

q 0.10 0.81679110 0.0347877

The middle column are the estimates assuming that the data have no ob-
servation error and the right column are our estimates with the observation
error estimated. Clearly, assuming no observation error when it is present has
negative consequences for the B and Q estimates.

8

Case study instructions

The case studies walk you through some analyses of multivariate population
count data using MARSS models and the MARSS() function. This will take
you through both the conceptual steps (with pencil and paper) and a R step
which translates the conceptual model into code.

Set-up

� If you haven’t already, install the MARSS package. See directions on the
CRAN webpage (http://cran.r-project.org/) for instructions on installing
packages. You will need write permissions for your R program directories
to install packages. See the help pages on CRAN for workarounds if you
don’t have write permission.

� Type in library(MARSS) at the R command line to load the package after
you install it.

� To open up a copy of the case study script with the code you need to
do the exercises, type RShowDoc("Case_study_X.R",package="MARSS")

(with X replaced by the case study number).

Tips

� summary(foo$model), where foo is a fitted model object, will print de-
tailed information on the structure of the MARSS model that was fit in the
call foo = MARSS(logdata). This allows you to double check the model
you fit. print(foo) will print a ‘English’ version of the model structure
along with the parameter estimates.

� When you run MARSS(), it will output the number of iterations used. If you
reached the maximum, re-run with control=list(maxit=...) set higher
than the default.

70 8 Case study instructions

� If you mis-specify the model, MARSS() will post an error that should give
you an idea of the problem (make sure silent=FALSE to see full error
reports). Remember, the number of rows in your data is n, time is across
the columns, and the length of the vector or factors passed in for model$Z
must be m, the number of x hidden state trajectories in your model.

� The default missing value indicator is NA. You can change that by passing
in miss.value=....

� Running MARSS(data), with no arguments except your data, will fit a
MARSS model with m = n, a diagonal Q matrix with m variances, and
i.i.d. observation errors.

9

Case Study 1: Count-based population viability
analysis (PVA) using corrupted data

9.1 Background

Estimates of extinction and quasi-extinction risk are an important risk met-
ric used in the management and conservation of endangered and threatened
species. By necessity, these estimates are based on data that contain both vari-
ability due to real year-to-year changes in the population growth rate (process
errors) and variability in the relationship between the true population size and
the actual count (observation errors). Classic approaches to extinction risk
assume the data have only process error, i.e. no observation error. In reality,
observation error is ubiquitous both because of the sampling variability and
also because of year-to-year (and day-to-day) variability in sightability.

In this case study, we will fit a univariate (meaning one time series) state-
space model to population count data with observation error. We will compute
the extinction risk metrics given in Dennis et al. (1991), however instead of
using a process-error only model (as is done in the original paper), we use
a model with both process and observation error. The risk metrics and their
interpretations are the same as in Dennis et al. (1991). The only real difference
is how we compute σ2, the process error variance. However this difference has
a large effect on our risk estimates, as you will see.

We use here a density-independent model, a stochastic exponential growth
model in log space. This equivalent to a MARSS model with B = 1. Density-
independence is often a reasonable assumption when doing a population vi-
ability analysis because we do such calculations for at-risk populations that
are either declining or that are well below historical levels (and presumably
carrying capacity). In an actual population viability analysis, it is necessary
to justify this assumption and if there is reason to doubt the assumption,
one tests for density-dependence (Taper and Dennis, 1994) and does sensitiv-
ity analyses using state-space models with density-dependence (Dennis et al.,
2006).

The univariate model is written:

72 9 Count-based PVA

xt = xt−1 + u + wt where wt ∼ N(0,σ2) (9.1)

yt = xt + vt where vt ∼ N(0,η2) (9.2)

where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices.

9.2 Simulated data with process and observation error

We will start by using simulated data to see the difference between data and
estimates from a model with process error only versus a model that also in-
cludes observation error. For our simulated data, we used a decline of 5%
per year, process variability of 0.02 (typical for small to medium-sized verte-
brates), and a observation variability of 0.05 (which is a bit on the high end).
We’ll randomly set 10% of the values as missing. Here is the code:

First, set things up:

sim.u = -0.05 # growth rate

sim.Q = 0.02 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 50 # number of years of data to generate

fracmissing = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance

years = seq(1:nYr) # sequence 1 to nYr

x = rep(NA,nYr) # replicate NA nYr times

y = rep(NA,nYr)

Then generate the population sizes using Equation 9.1:

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1,mean=0,sd=sqrt(sim.Q)) }

Lastly, add observation error using Equation 9.2 and then add missing
values:

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R))

}

missYears = sample(years[2:(nYr-1)],floor(fracmissing*nYr),

replace = FALSE)

y[missYears]=NA

9.2 Simulated data with process and observation error 73

●
●●●

●

●
●

●●

●
●
●

●●
●●●●

●

●
●●

●●

●

●

●
●

●
●
●●

●

●

●

●
●●

●●
●●

●
●

●

0 10 20 30 40 50

4.
5

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●
●
●●

●
●●

●●●
●

●
●
●

●

●●●
●●

●●
●
●
●

●●
●
●●

●●
●●

●●
●

●
●

●

●●
●

●●

0 10 20 30 40 50

4.
0

5.
5

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●
●
●

●

●
●

●
●
●

●●●
●●

●

●

●
●●

●

●●●●●

●●
●

●●
●

●
●
●
●

●

●●
●

●
●●

●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●

●
●
●
●

●
●
●
●

●
●
●●

●
●
●
●

●●
●

●●●●

●

●

●
●

●●●
●●

●

●
●●

●
●

●●

●
●

●

0 10 20 30 40 50

4.
5

6.
0

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

●●
●

●

●

●

●
●
●
●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●
●

●

●●
●
●

●●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●
●●●

●●
●

●
●

●
●●●

●

●●●●●
●

●
●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●
●
●

●
●
●
●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●
●
●
●

●●
●
●

●

●

●
●

●

●

●●

●

●
●
●

●●●

●

●

●

●

●●●
●
●

●
●

●
●●●

●

●
●
●

●

●

●

0 10 20 30 40 50

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●●●●

●

●●●

●

●
●
●
●

●

●
●●

●
●
●
●●●

●●
●

●●●
●●●

●●●

●
●
●●

●

●

●●●
●

0 10 20 30 40 50

4.
0

5.
5

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●●

●●
●
●
●

●
●●

●

●●
●

●

●
●

●
●●

●
●●

●●
●●

●
●

●

●

●●

●
●●

●

●
●
●

●●

●●●

0 10 20 30 40 50

4.
5

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 9.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Stochastic population trajectories show much variation, so it is best to
look at a few simulated data sets at once. In Figure 9.1, nine simulations from
the identical parameters are shown.

Example 9.1 (The effect of parameter values on parameter esti-
mates)

A good way to get a feel for reasonable σ2 values is to generate simulated
data and look at the time series. As a biologist, you probably have a pretty
good idea of what kind of year-to-year population changes are reasonable for
your species. For example for many large mammalian species, the maximum
population yearly increase would be around 50% (the population could go from
1000 to 1500 in one year), but some of fish species could easily double or
even triple in a really good year. Your observed data may bounce around a lot
for many different reasons having to do with sightability, sampling error, age-
structure, etc., but the underlying population trajectory is constrained by the

74 9 Count-based PVA

kinds of year-to-year changes in population size that are biologically possible
for your species. σ2 describes those true population changes.

Run the exercise code several times using different parameter values to get a
feel for how different the time series can look based on identical parameter
values. You can cut and paste from the pdf into the R command line. Typical
vertebrate σ2 values are 0.002 to 0.02, and typical η2 values are 0.005 to 0.1.
A u of -0.01 translates to an average 1% per year decline and a u of -0.1
translates to an average 10% per year decline (approximately).

Example 9.1 code
Type RShowDoc("Case_study_1.R",package="MARSS") to open a file with all the

example code.

par(mfrow=c(3,3))

sim.u = -0.05

sim.Q = 0.02

sim.R = 0.05

nYr= 50

fracmiss = 0.1

init = 7

years = seq(1:nYr)

for(i in 1:9){

x = rep(NA,nYr) # vector for ts w/o measurement error

y = rep(NA,nYr) # vector for ts w/ measurement error

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1, mean=0, sd=sqrt(sim.Q)) }

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R)) }

missYears =

sample(years[2:(nYr-1)],floor(fracmiss*nYr),replace = FALSE)

y[missYears]=NA

plot(years, y,

xlab="",ylab="log abundance",lwd=2,bty="l")

lines(years,x,type="l",lwd=2,lty=2)

title(paste("simulation ",i))

}

legend("topright", c("Observed","True"),

lty = c(-1, 2), pch = c(1, -1))

9.3 Maximum-likelihood parameter estimation 75

9.3 Maximum-likelihood parameter estimation

9.3.1 Model with process and observation error

Using the simulated data, we estimate the parameters, u, σ2, and η2, and the
hidden population sizes. These are the estimates using a model with pro-
cess and observation variability. The function call is kem = MARSS(data),
where data is a vector of logged (base e) counts with missing values de-
noted by NA. After this call, the maximum-likelihood parameter estimates
are kemparU, kemparQ and kemparR. There are numerous other outputs
from the MARSS() function. To get a list of the outputs type in names(kem).
Note that kem is just a name; the output could have been called foo. Here’s
code to fit to the simulated time series:

kem = MARSS(y)

Let’s look at the parameter estimates for the nine simulated time series
in Figure 9.1 to get a feel for the variation. The MARSS() function was used
on each time series to produce parameter estimate for each simulation. The
estimates are followed by the mean (over the nine simulations) and the true
values:

kem.U kem.Q kem.R

sim 1 -0.04502531 0.003643018 0.08172354

sim 2 -0.06332520 0.001827466 0.06502445

sim 3 -0.03808222 0.000000000 0.06087592

sim 4 -0.05336858 0.006066499 0.07638757

sim 5 -0.03356485 0.000000000 0.09950537

sim 6 -0.04034468 0.027440941 0.03717507

sim 7 -0.03444717 0.025180385 0.03304468

sim 8 -0.05416476 0.014519754 0.05499180

sim 9 -0.02831582 0.042632786 0.03191850

mean sim -0.04340429 0.013478983 0.06007188

true -0.05000000 0.020000000 0.05000000

As expected, the estimated parameters do not exactly match the true param-
eters, but the average should be fairly close (although nine simulations is a
small sample size). Also note that although we do not get u quite right, our
estimates are usually negative. Thus our estimates usually indicate declin-
ing dynamics. Some of the kem.Q estimates may be 0. This means that the
maximum-likelihood estimate that the data are generated by is a process with
no environment variation and only observation error.

The MARSS model fit also gives an estimate of the true population size
with observation error removed. This is in kem$states. Figure 9.2 shows the
estimated true states of the population over time as a solid line. Note that the
solid line is considerably closer to the actual true states (dashed line) than
the observations. On the other hand with certain datasets, the estimates can
be quite wrong as well!

76 9 Count-based PVA

●
●●●

●

●
●

●●

●
●
●

●●
●●●●

●

●
●●

●●

●

●

●
●

●
●
●●

●

●

●

●
●●

●●
●●

●
●

●

0 10 20 30 40 50

4.
5

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●
●
●●

●
●●

●●●
●

●
●
●

●

●●●
●●

●●
●
●
●

●●
●
●●

●●
●●

●●
●

●
●

●

●●
●

●●

0 10 20 30 40 50

4.
0

5.
5

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●
●
●

●

●
●

●
●
●

●●●
●●

●

●

●
●●

●

●●●●●

●●
●

●●
●

●
●
●
●

●

●●
●

●
●●

●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●

●
●
●
●

●
●
●
●

●
●
●●

●
●
●
●

●●
●

●●●●

●

●

●
●

●●●
●●

●

●
●●

●
●

●●

●
●

●

0 10 20 30 40 50

4.
5

6.
0

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

●●
●

●

●

●

●
●
●
●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●
●

●

●●
●
●

●●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●
●●●

●●
●

●
●

●
●●●

●

●●●●●
●

●
●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●
●
●

●
●
●
●

0 10 20 30 40 50

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●
●
●
●

●●
●
●

●

●

●
●

●

●

●●

●

●
●
●

●●●

●

●

●

●

●●●
●
●

●
●

●
●●●

●

●
●
●

●

●

●

0 10 20 30 40 50

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●●●●

●

●●●

●

●
●
●
●

●

●
●●

●
●
●
●●●

●●
●

●●●
●●●

●●●

●
●
●●

●

●

●●●
●

0 10 20 30 40 50

4.
0

5.
5

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●●

●●
●
●
●

●
●●

●

●●
●

●

●
●

●
●●

●
●●

●●
●●

●
●

●

●

●●

●
●●

●

●
●
●

●●

●●●

0 10 20 30 40 50

4.
5

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 9.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the MARSS model. When the process error variance is 0, these
lines are straight.

9.3.2 Model with no observation error

We used the MARSS model to estimate the mean population rate u and pro-
cess variability σ2 under the assumption that the count data have observation
error. However, the classic approach to this problem, referred to as the “Den-
nis model” (Dennis et al., 1991), uses a model that assumes the data have no
observation error (a MAR model); all the variability in the data is assumed to
result from process error. This approach works well if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in Dennis et al. (1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years = years[!is.na(y)] # the non missing years

den.y = y[!is.na(y)] # the non missing counts

9.3 Maximum-likelihood parameter estimation 77

den.n.y = length(den.years)

delta.pop = rep(NA, den.n.y-1) # population transitions

tau = rep(NA, den.n.y-1) # step sizes

for (i in 2:den.n.y){

delta.pop[i-1] = den.y[i] - den.y[i-1]

tau[i-1] = den.years[i] - den.years[i-1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 9.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

note: the "-1" specifies no intercept

den91.u = den91$coefficients

den91.Q = var(resid(den91))

#type ?lm to learn about the linear regression function in R

#form is lm(dependent.var ~ response.var1 + response.var2 + ...)

#type summary(den91) to see other info about our regression fit

Here are the parameter values for the data in Figure 9.2 using the process-
error only model:

den91.U den91.Q

sim 1 -0.04846916 0.16880707

sim 2 -0.06634760 0.11067440

sim 3 -0.04893787 0.12289817

sim 4 -0.05697152 0.16065673

sim 5 -0.00777143 0.16954509

sim 6 -0.04191723 0.10640845

sim 7 -0.03983177 0.09826688

sim 8 -0.06414365 0.11703628

sim 9 -0.02959496 0.11500498

mean sim -0.04488724 0.12992200

true -0.05000000 0.02000000

Notice that the u estimates are similar to those from MARSS model, but the
σ2 estimate (Q) is much larger. That is because this approach treats all the
variance as process variance, so any observation variance in the data is lumped
into process variance (in fact it appears as an additional variance of twice the
observation variance).

Example 9.2 (The variability in parameter estimates)

78 9 Count-based PVA

●
●

●

●

●

●

●

●●

●

●
●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

0
0.

5

time step size (tau)

po
pu

la
tio

n
tr

an
si

tio
n

si
ze

Fig. 9.3. The regression of log(Nt+τ)− log(Nt) against τ. The slope is the estimate
of u and the variance of the residuals is the estimate of σ2.

In this example, you will look at how variable the parameter estimates are by
generating multiple simulated data sets and then estimating parameter values
for each. You’ll compare the MARSS estimates to the estimates using a process
error only model (i.e. ignoring the observation error).

9.3 Maximum-likelihood parameter estimation 79

Example 9.2 code
Type RShowDoc("Case_study_1.R",package="MARSS") to open a file with all the

example code. You will not be able to edit this file. To edit, copy and paste into a

new script file.

sim.u = -0.05 # growth rate

sim.Q = 0.02 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 50 # number of years of data to generate

fracmiss = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance (~1100 individuals)

nsim = 9

years = seq(1:nYr) # col of years

params = matrix(NA, nrow=(nsim+2), ncol=5,

dimnames=list(c(paste("sim",1:nsim),"mean sim","true"),

c("kem.U","den91.U","kem.Q","kem.R", "den91.Q")))

x.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/o measurement error

y.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/ measurement error

for(i in 1:nsim){

x.ts[i,1]=init

for(t in 2:nYr){

x.ts[i,t] = x.ts[i,t-1]+sim.u+rnorm(1,mean=0,sd=sqrt(sim.Q))}

for(t in 1:nYr){

y.ts[i,t] = x.ts[i,t]+rnorm(1,mean=0,sd=sqrt(sim.R))}

missYears = sample(years[2:(nYr-1)], floor(fracmiss*nYr),

replace = FALSE)

y.ts[i,missYears]=NA

#MARSS estimates

kem = MARSS(y.ts[i,], silent=TRUE)

params[i,c(1,3,4)] = c(kemparU,kemparQ,kemparR)

#Dennis et al 1991 estimates

den.years = years[!is.na(y.ts[i,])] # the non missing years

den.yts = y.ts[i,!is.na(y.ts[i,])] # the non missing counts

den.n.yts = length(den.years)

delta.pop = rep(NA, den.n.yts-1) # transitions

tau = rep(NA, den.n.yts-1) # time step lengths

for (t in 2:den.n.yts){

delta.pop[t-1] = den.yts[t] - den.yts[t-1] # transitions

tau[t-1] = den.years[t]-den.years[t-1] # time step length

} # end i loop

den91 <- lm(delta.pop ~ -1 + tau) # -1 specifies no intercept

params[i,c(2,5)] = c(den91$coefficients, var(resid(den91)))

}

params[nsim+1,]=apply(params[1:nsim,],2,mean)

params[nsim+2,]=c(sim.u,sim.u,sim.Q,sim.R,sim.Q)

80 9 Count-based PVA

Here is an example of the output from the code:

print(params,digits=3)

kem.U den91.U kem.Q kem.R den91.Q

sim 1 -0.0406 0.0121 0.006334 0.0799 0.1529

sim 2 -0.0467 -0.0362 0.000000 0.0769 0.1313

sim 3 -0.0818 -0.0742 0.020666 0.0413 0.1224

sim 4 -0.0508 -0.0502 0.002550 0.0499 0.1144

sim 5 -0.0263 -0.0457 0.030025 0.0463 0.1322

sim 6 -0.0809 -0.1196 0.015401 0.0737 0.1725

sim 7 -0.0373 -0.0211 0.004676 0.0492 0.1020

sim 8 -0.0370 -0.0604 0.000285 0.0691 0.0946

sim 9 -0.0996 -0.0765 0.012591 0.0391 0.0919

mean sim -0.0557 -0.0524 0.010281 0.0584 0.1238

true -0.0500 -0.0500 0.020000 0.0500 0.0200

1. Re-run the code a few times to see the performance of the estimates us-
ing a state-space model (kem) versus the model with no observation error
(den91). You can copy and paste the code from the pdf file into R .

2. Alter the observation variance, sim.R, in the data generation step in order
to get a feel for performance as observations are further corrupted. What
happens as observation error is increased?

3. Decrease the number of years of data, nYr, and re-run the parameter es-
timation. What changes?

If you find that the exercise code takes too long to run, reduce the number of
simulations (by reducing nsim in the code).

9.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit
a certain threshold xd within a certain time frame te – if the observed trends
continue’. In practice, the threshold used is not Ne = 1, which would be true
extinction. Often a ‘functional’ extinction threshold will be used (Ne >> 1).
Other times a threshold representing some fraction of current levels is used.
The latter is used because we often have imprecise information about the
relationship between the true population size and what we measure in the
field; that is, many population counts are index counts. In these cases, one

9.4 Probability of hitting a threshold Π(xd , te) 81

must use ‘fractional declines’ as the threshold. Also, extinction estimates that
use an absolute threshold (like 100 individuals) are quite sensitive to error
in the estimate of true population size. Here, we are going to use fractional
declines as the threshold, specifically pd = 0.1 which means a 90% decline.

The probability of hitting a threshold, denoted Π(xd , te), is typically pre-
sented as a curve showing the probabilities of hitting the threshold (y-axis)
over different time horizons (te) on the x-axis. Extinction probabilities can be
computed through Monte Carlo simulations or analytically using Equation 16
in Dennis et al. (1991) (note there is a typo in Equation 16; the last + is
supposed to be a −). We will use the latter method:

Π(xd , te) = π(u)×Φ

(
−xd + |u|te√

σ2te

)
+ exp(2xd |u|/σ2)Φ

(
−xd−|u|te√

σ2te

)
(9.3)

where xe is the threshold and is defined as xe = log(N0/Ne). N0 is the current
population estimate and Ne is the threshold. If we are using fractional declines
then xe = log(N0/(pd×N0)) =− log(pd). π(u) is the probability that the thresh-
old is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and π(u) = exp(−2uxd/σ2)
if u > 0. Φ() is the cumulative probability distribution of the standard normal
(mean = 0, sd = 1).

Here is the R code for that computation:

pd = 0.1 #means a 90 percent decline

tyrs = 1:100

xd = -log(pd)

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q)) #Q=sigma2

for (i in 1:100){

Pi[i] = p.ever * pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 9.4 shows the estimated probabilities of hitting the 90% decline for
the nine 30-year times series simulated with u =−0.05, σ2 = 0.01 and η2 = 0.05.
The dashed line shows the estimates using the MARSS parameter estimates
and the solid line shows the estimates using a process-error only model (the
den91 estimates). The circles are the true probabilities. The difference between
the estimates and the true probalities is due to errors in û. Those errors are due
largely to process error—not observation error. As we saw earlier, by chance
population trajectories with a u < 0 will increase, even over a 50-year period.
In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
nine simulations). Note that on average (over nine simulations), the estimates
are good. If we had averaged over 1000 simulations instead of nine, you would
see that the MARSS line falls on the true line. It is an unbiased predictor.
While that may seem a small consolation if estimates for individual simulations

82 9 Count-based PVA

are all over the map, it is important for correctly specifying our uncertainty
about our estimates. Second, rather than focusing on how the estimates and
true lines match up, see if there are any types of forecasts that seem better
than others. For example, are 20-year predictions better than 50-year and
are 100-year forecasts better or worse. In Exercise 3, you will remake this
figure with different u. You’ll discover from that forecasts are more certain for
populations that are declining faster.

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

average over sims

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80
0.

0
0.

4
0.

8
time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 1

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 2

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 3

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 4

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80
0.

0
0.

4
0.

8
time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 5

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 6

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 7

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 8

● True
Dennis
KalmanEM

Fig. 9.4. Plot of the true and estimated probability of declining 90% in different
time horizons for nine simulated population time series with observation error. The
plot may look like a step-function if the σ2 estimate is very small (<1e-4 or so).

Example 9.3 (The effect of parameter values on risk estimates)

In this example, you will recreate Figure 9.4 using different parameter values.
This will give you a feel for how variability in the data and population pro-
cess affect the risk estimates. You’ll need to run the Example 9.2 code before
running the Example 9.3 code.

9.4 Probability of hitting a threshold Π(xd , te) 83

Example 9.3 code
Type RShowDoc("Case_study_1.R",package="MARSS") to open a file with all the

example code.

#Needs Exercise 2 to be run first

par(mfrow=c(3,3))

pd = 0.1; xd = -log(pd) # decline threshold

te = 100; tyrs = 1:te # extinction time horizon

for(j in c(10,1:8)){

real.ex = denn.ex = kal.ex = matrix(nrow=te)

#MARSS parameter estimates

u=params[j,1]; Q=params[j,3]

if(Q==0) Q=1e-4 #just so the extinction calc doesn't choke

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

if(is.finite(exp(2*xd*abs(u)/Q))){

sec.part = exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)* tyrs[i])/sqrt(Q*tyrs[i]))

}else sec.part=0

kal.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+sec.part

} # end i loop

#Dennis et al 1991 parameter estimates

u=params[j,2]; Q=params[j,5]

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

denn.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#True parameter values

u=sim.u; Q=sim.Q

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

real.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#plot it

plot(tyrs, real.ex, xlab="time steps into future",

ylab="probability of extinction", ylim=c(0,1), bty="l")

if(j<=8) title(paste("simulation ",j))

if(j==10) title("average over sims")

lines(tyrs,denn.ex,type="l",col="red",lwd=2,lty=1)

lines(tyrs,kal.ex,type="l",col="green",lwd=2,lty=2)

}

legend("bottomright",c("True","Dennis","KalmanEM"),pch=c(1,-1,-1),

col=c(1,2,3),lty=c(-1,1,2),lwd=c(-1,2,2),bty="n")

84 9 Count-based PVA

1. Change sim.R and rerun the Example 9.2 code. Then run the Example 9.3
code. When are the estimates using the process-error only model (den91)
worse and in what way are they worse?

2. You might imagine that you should always use a model that includes ob-
servation error, since in practice observations are never perfect. However,
there is a cost to estimating that extra variance parameter and the cost is
a more variable σ2 (Q) estimate. Play with shortening the time series and
decreasing the sim.R values. Are there situations when the ‘cost’ of the
extra parameter is greater than the ‘cost’ of ignoring observation error?

3. How does changing the extinction threshold (pd) change the extinction
probability curves? (Do not remake the data, i.e. don’t rerun the Example
9.2 code.)

4. How does changing the rate of decline (sim.u) change the estimates of
risk? Rerun the Example 9.2 code using a lower u; this will create a new
matrix of parameter estimates. Then run the Example 9.3 code. Do the
estimates seem better of worse for rapidly declining populations?

5. Rerun the Example 9.2 code using fewer number of years (nYr smaller)
and increase fracmiss. Then run the Example 9.3 code. The graphs will
start to look peculiar. Why do you think it is doing that? Hint: look at the
estimated parameters.

9.5 Certain and uncertain regions

From Example 9.3, you have observed one of the problems with estimates of
the probability of hitting thresholds. Looking over the nine simulations, your
risk estimates will be on the true line sometimes and other times they are
way off. So your estimates are variable and one should not present only the
point estimates of the probability of 90% decline. At the minimum, confidence
intervals need to be added (next section), but even with confidence intervals,
the probability of hitting declines often does not capture our certainty and
uncertainty about extinction risk estimates.

From Example 9.3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (the threshold
is never hit), while for other time horizons (30, 50 years) the estimates are all
over the map. Put another way, you may be able to say with high confidence
that a 90% decline will not occur between years 1 to 20 and that by year 100
it most surely will have occurred. However, between the years 20 and 100, you
are very uncertain about the risk. The point is that you can be certain about
some forecasts while at the same time being uncertain about other forecasts.

9.5 Certain and uncertain regions 85

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of the
0-1 range your 95% confidence interval covers. Ellner and Holmes (2008) show
such a figure (their Figure 1). Figure 9.5 shows a version of this figure that
you can produce with the function CSEGtmufigure(u= val, N= val, s2p=

val). For the figure, the values u = −0.05 which is a 5% per year decline,
N = 25 so 25 years between the first and last census, and s2

p = 0.01 are used.
The process variability for big mammals is typically in the range of 0.002 to
0.02.

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T time steps

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

time steps = 50
 mu = −0.05 s2.p = 0.02

high certainty P<0.05
high certainty P>0.95
uncertain
highly uncertain

Fig. 9.5. This figure shows your region of high uncertainty (dark grey). In this
region, the minimum 95% confidence intervals (meaning if you had no observation
error) span 80% of the 0 to 1 probability. That is, you are uncertain if the probability
of a specified decline is close to 0 or close to 1. The white area shows where your
upper 95% CIs does not exceed P=0.05. So you are quite sure the probability of
a specified decline is less than 0.05. The black area shows where your lower 95%
confidence interval is above P=.95. So you are quite sure the probability is greater
than P=0.95. The light grey is between these two certain/uncertain extremes.

86 9 Count-based PVA

Example 9.4 (Uncertain and certain regions)

Use the Example 9.4 code to re-create Figure 9.5 and get a feel for when risk
estimates are more certain and when they are less certain. N are the number
of years of data, u is the mean population growth rate, and s2p is the process
variance.

Exercise 9.4 code
Type RShowDoc("Case_study_1.R",package="MARSS") to open a file with all the

example code.

par(mfrow = c(1, 1))

CSEGtmufigure(N = 50, u = -0.05, s2p = 0.02)

9.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in population
viability analysis and it appears in IUCN Red List criteria. However, as you
have seen, there is high uncertainty associated with such estimates. Part of
the problem is that probability is constrained to be 0 to 1, and it is easy to get
estimates with confidence intervals that span 0 to 1. Other metrics of risk, û
and the distribution of the time to hit a threshold (Dennis et al., 1991), do not
have this problem and may be more informative. Figure 9.6 shows different
risk metrics from Dennis et al. (1991) on a single plot. This figure is generated
by a call to the function CSEGriskfigure():

dat=read.table(datafile, skip=1)

dat=as.matrix(dat)

CSEGriskfigure(dat)

The datafile is the name of the data file, with years in column 1 and pop-
ulation count (logged) in column 2. CSEGriskfigure() has a number of ar-
guments that can be passed in to change the default behavior. The variable
te is the forecast length (default is 100 years), threshold is the extinction
threshold either as an absolute number, if absolutethresh=TRUE, or as a
fraction of current population count, if absolutethresh=FALSE. The default
is absolutethresh=FALSE and threshold=0.1. datalogged=TRUE means the
data are already logged; this is the default.

Example 9.5 (Risk figures for different species)

9.6 More risk metrics and some real data 87

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

1970 1974 1978 1982 1986 1990

20
40

60
80

P
op

. E
st

im
at

e

u est = −0.054 (95% CIs −0.16 , 0.047)
 Q est = 0.052

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time steps into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

Prob. to hit 2

95% CI
75% CI
mean

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0

time steps into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

PDF of time to threshold
 given it IS reached

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Number of ind. at Ne

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

90% threshold

Prob. of hitting threshold in 100 time steps

0 20 40 60 80 100

0
50

10
0

15
0

Sample projections

time steps into the future

N

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T time steps

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

time steps = 22
 mu = −0.054 s2.p = 0.052

Fig. 9.6. Risk figure using data for the critically endangered African Wild Dog
(data from Ginsberg et al. 1995). This population went extinct after 1992.

Use the Example 9.5 code to re-create Figure 9.6. The package includes other
data for you to run: prairiechicken from the endangered Attwater Prairie
Chicken, graywhales from Gerber et al. (1999), and grouse from the Sharp-
tailed Grouse (a species of U.S. federal concern) in Washington State. Note
for some of these other datasets, the Hessian matrix cannot be inverted and
you will need to use CI.method="parametric". If you have other text files of
data, you can run those too. The commented lines show how to read in data
from a tab-delimited text file with a header line.

88 9 Count-based PVA

Exercise 5 code
Type RShowDoc("Case_study_1.R",package="MARSS") to open a file with the exam-

ple code.

#If you have your data in a tab delimited file with a header

#This is how you would read it in using file.choose()

#to call up a directory browser.

#However, the package has the datasets for the exercises

#dat=read.table(file.choose(), skip=1)

#dat=as.matrix(dat)

dat = wilddogs

CSEGriskfigure(dat, CI.method="hessian", silent=TRUE)

9.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence intervals (95%
and 75%) on the probabilities in the top right panel. A standard way to
produce these intervals is via parametric bootstrapping. Here are the steps in
a parametric bootstrap:

� You estimate u, σ2 and η2

� Then you simulate time series using those estimates and Equations 9.1 and
9.2

� Then you re-estimate your parameters from the simulated data (using say
MARSS(simdata)

� Repeat for 1000s of time series simulated using your estimated parameters.
This gives you a large set of bootstrapped parameter estimates

� For each bootstrapped parameter set, compute a set of extinction estimates
(you use Equation 9.3 and code from Example 9.3)

� The α% ranges on those bootstrapped extinction estimates gives you your
α confidence intervals on your probabilities of hitting thresholds

The MARSS package provides the function MARSSparamCIs() to add boot-
strapped confidence intervals to fitted models (type ?MARSSparamCIs to learn
about the function).

In the function CSEGriskfigure(), you can set CI.method = c("hessian",

"parametric", "innovations", "none") to tell it how to compute the con-
fidence intervals. The methods ‘parametric’ and ‘innovations’ specify para-
metric and non-parametric bootstrapping respectively. Producing parameter
estimates by bootstrapping is quite slow. Approximate confidence intervals on
the parameters can be generated rapidly using the inverse of a numerically
estimated Hessian matrix (method ‘hessian’). This uses an estimate of the

9.8 Comments 89

variance-covariance matrix of the parameters (the inverse of the Hessian ma-
trix). Using an estimated Hessian matrix to compute confidence intervals is a
handy trick that can be used for all sorts of maximum-likelihood parameter
estimates.

9.8 Comments

Data with cycles, from age-structure or predator-prey interactions, are difficult
to analyze and the EM algorithm used in the MARSS package will give poor
estimates for this type of data. The slope method (Holmes, 2001) is more
robust to those problems. Holmes et al. (2007) used the slope method in a
large study of data from endangered and threatened species, and Ellner and
Holmes (2008) showed that the slope estimates are close to the theoretical
minimum uncertainty. Especially, when doing a population viability analysis
using a time series with fewer than 25 years of data, the slope method is often
less biased and (much) less variable because that method is less data-hungry
(Holmes, 2004). However the slope method is not a true maximum-likelihood
method and thus constrains the types of further analyses you can do (such as
model selection).

10

Case study 2: Combining multi-site data to
estimate regional population trends

10.1 Harbor seals in the Puget Sound, WA.

In this case study, we will use multivariate state-space models to combine
surveys from multiple regions (or sites) into one estimate of the average long-
term population growth rate and the year-to-year variability in that growth
rate. Note this is not quite the same as estimating the ‘trend’; ‘trend’ often
means what population change happened, whereas the long-term population
growth rate refers to the underlying population dynamics. We will use as our
example a dataset from harbor seals in Puget Sound, Washington, USA.

We have five regions (or sites) where harbor seals were censused from 1978-
1999 while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20
years of the data but we do not know what fraction of the population that
each region represents nor do we know the observation-error variance for each
region. Given differences between behaviors of animals in different regions and
the numbers of haul-outs in each region, the observation errors may be quite
different. The regions have had different levels of sampling; the best sampled
region has only 4 years missing while the worst has over half the years missing
(Figure 10.1).

For this case study, we will assume that the underlying population process
is a stochastic exponential growth process with rates of increase that were
not changing through 1978-1999. However, we are not sure if all five regions
sample a single “total Puget Sound” population or if there are independent
subpopulations. We will estimate the long-term population growth rate using
different assumptions about the population structures (one big population
versus multiple smaller ones) and observation error structures to see how
different assumptions change the trend estimates.

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219

92 10 Combining multi-site and subpopulation data

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

lo
g(

co
un

ts
)

2

2

2
2

2 2

2 2 2
2 2

2 2 2
2

2 2
2

3

3

3
3

3 3 3 3 3 3 3 3 3
3

3
3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Puget Sound Harbor Seal Surveys

Fig. 10.1. Plot of the of the count data from the five harbor seal regions (Jeffries
et al. 2003). The numbers on each line denote the different regions: 1) Strait of Juan
de Fuca (SJF), 2) San Juan Islands (SJI), 2) Eastern Bays (EBays), 4) Puget Sound
(PSnd), and 5) Hood Canal (HC). Each region is an index of the total harbor seal
population, but the bias (the difference between the index and the true population
size) for each region is unknown.

The data for this case study are in the MARSS package. The data have
time running down the rows and years in the first column. We need time
across the columns for the MARSS() function, so we will transpose the data:

dat=t(harborSealWA) #Transpose

years = dat[1,] #[1,] means row 1

n = nrow(dat)-1

dat = dat[2:nrow(dat),] #no years

If you needed to read data in from a comma-delimited or tab-delimited file,
these are the commands to do that:

dat = read.csv("datafile.csv",header=TRUE)

dat = read.table("datafile.csv",header=TRUE)

10.2 A single well-mixed Puget Sound population 93

The years are in column 1 of dat and the logged data are in the rest of the
columns. The number of observation time series (n) is the number of rows in
dat minus 1 (for years row). Let’s look at the first few years of data:

print(harborSealWA[1:8,], digits=3)

Year SJF SJI EBays PSnd HC

[1,] 1978 6.03 6.75 6.63 5.82 6.6

[2,] 1979 NA NA NA NA NA

[3,] 1980 NA NA NA NA NA

[4,] 1981 NA NA NA NA NA

[5,] 1982 NA NA NA NA NA

[6,] 1983 6.78 7.43 7.21 NA NA

[7,] 1984 6.93 7.74 7.45 NA NA

[8,] 1985 7.16 7.53 7.26 6.60 NA

The NA’s in the data are missing values.

10.2 A single well-mixed Puget Sound population

The first step is to mathematically specify the population structure and how
the regions relate to that structure. The general state-space model is

xt = Bxt−1 + u + wt , where wt ∼ MVN(0,Q)

yt = Zxt + a + vt , where vt ∼ MVN(0,R)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.

10.2.1 The population process, x

When we are looking at data over a large geographic region, we might make the
assumption that the different census regions are measuring a single population
if we think animals are moving sufficiently such that the whole area (multiple
regions together) is “well-mixed”. We write a model of the total population
abundance as:

nt = exp(u + wt)nt−1, (10.1)

where nt is the total count in year t, u is the mean population growth rate,
and wt is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u + wt , where wt ∼ N(0,q) (10.2)

xt = lognt . When there is one effective population, there is one x, therefore xt
is a 1× 1 matrix. There is one population growth rate (u) and there is one
process variance (q). Thus u and Q are 1×1 matrices.

94 10 Combining multi-site and subpopulation data

10.2.2 The observation process, y

For this first analysis, we assume that all five regional time series are observing
this one population trajectory but they are scaled up or down relative to that
trajectory. In effect, we think that animals are moving around a lot and our
regional samples are some fraction of the population. There is year-to-year
variation in the fraction in each region, just by chance. Notice that under this
analysis, we do not think the regions represent independent subpopulations
but rather independent observations of one population. Our model for the
data, yt = Zxt + a + vt , is written as:




y1,t
y2,t
y3,t
y4,t
y5,t




=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




(10.3)

Each yi is the time series for a different region. The a’s are the bias between
the regional sample and the total population. The a’s are scaling (or intercept-
like) parameters2. We allow that each region could have a unique observation
variance and that the observation errors are independent between regions.
Lastly, we assume that the observations errors on log(counts) are normal and
thus the errors on (counts) are log-normal.3

We specify independent observation errors with unique variances by speci-
fying that the v’s come from a multivariate normal distribution with variance-
covariance matrix R (v∼ MVN(0,R)), where

R =




r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5




(10.4)

Z specifies which observation time series, yi,1:T , is associated with which
population trajectory, x j,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population

2 To get rid of the a’s, we scale multiple observation time series against each other;
thus one a will be fixed at 0. Estimating the bias between regional indices and
the total population is important for getting an estimate of the total population
size. The type of time-series analysis that we are doing here (trend analysis) is
not useful for estimating a’s. Instead to get a’s one would need some type of
mark-recapture data. However, for trend estimation, the a’s are not important.
The regional observation variance captures increased variance due to a regional
estimate being a smaller sample of the total population.

3 The assumption of normality is not unreasonable since these regional counts are
the sum of counts across multiple haul-outs.

10.2 A single well-mixed Puget Sound population 95

trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zi j = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n×1:

Z =




1
1
1
1
1




(10.5)

10.2.3 Setting the model structure for MARSS

Now that we have specified our state-space model, we set the arguments that
will tell the function MARSS() the structure of our model. We do this by
passing in the argument model to MARSS(). The argument model is a list
which specifies the model structure for Z, u, Q, etc. The function call will now
look like:

kem1 = MARSS(dat, model=list(Z=Z.model, U=U.model,

Q=Q.model, R=R.model))

First we set the Z model. We need to tell the MARSS function that Z is a
5×1 matrix of 1s (as in Equation 10.3). We can do this two ways. We can pass
in Z.model as a matrix of ones, matrix(1,5,1), just like in Equation (10.3)
or we can pass in a vector of five factors, factor(c(1,1,1,1,1)). The i-th
factor specifies which population trajectory the i-th observation time series
belongs to. Since there is only one population trajectory in this first analysis,
we will have a vector of five 1’s: every observation time series is measuring the
first, and only, population trajectory.

Z.model = factor(c(1,1,1,1,1))

Note, the vector (the c() bit) must be wrapped in factor() so that MARSS

recognizes what it is. You can use either numeric or character vectors:
c(1,1,1,1,1) is the same as c("PS","PS","PS","PS","PS").

Next we specify that the R variance-covariance matrix only has terms
on the diagonal (the variances) with the off-diagonal terms (the covariances)
equal to zero:

R.model = "diagonal and unequal"

The ‘and unequal’ part specifies that the variances are allowed to be unique
on the diagonal. If we wanted to force the observation variances to be equal
at all regions, we would use "diagonal and equal".

For the first analysis, we only need to set the model structure for Z and
R. Since there is only one population, there is only one u and Q (they are
scalars), so there are no constraints to set on them.

96 10 Combining multi-site and subpopulation data

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

5
6

7
8

9

in
de

x
of

 lo
g

ab
un

da
nc

e

2

2

2
2

2 2

2 2 2
2 2

2 2 2 2
2 2

2

3

3
3

3
3 3 3 3 3 3 3 3 3

3
3

3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Observations and total population estimate

Fig. 10.2. Plot of the estimate of “log total harbor seals in Puget Sound” (minus the
unknown bias for time series 1 against the data. The estimate of the total seal count
has been scaled relative to the first time series. The 95% confidence intervals on the
population estimates are the dashed lines. These are not the confidence intervals
on the observations, and the observations (the numbers) will not fall between the
confidence interval lines.

10.2.4 The MARSS() output

The output from MARSS(), here assigned the name kem, is a list of objects. To
see all the objects in it, type:

names(kem1)

The maximum-likelihood estimates of “total harbor seal population” scaled
to the first observation data series (Figure 10.2) are in kem1$states, and
kem1$states.se are the standard errors on those estimates. To get 95% con-
fidence intervals, use kem1$states +/- 1.96*kem1$states.se. Figure 10.2
shows a plot of kem1$states with its 95% confidence intervals over the data.
Because kem1$states has been scaled relative to the first time series, it is on
top of that time series. One of the biases, the as, cannot be estimated and
arbitrarily our algorithm choses a1 = 0, so the population estimate is scaled
to the first observation time series.

10.2 A single well-mixed Puget Sound population 97

The estimated parameters are a list: kem1$par. To get the element U of
that list, which is the estimated long-term population growth rate, type in
kem1parU. Multiply by 100 to get the percent increase per year. The esti-
mated process variance is given by kem1parQ.

The log-likelihood of the fitted model is in kem1$logLik. We estimated
one initial x (t = 1), one process variance, one u, four a’s, and five observation
variances’s. So K = 12 parameters. The AIC of this model is −2× log-like+2K,
which we can show by typing kem1$AIC.

Example 10.1 (Fit the single population model)

Analyze the harbor seal data using the single population model (Equations 10.2
and 10.3). The code for Example 10.1 shows you how to input data and send
it to the function MARSS(). As you run the examples, add the estimates to
the table at the end of the chapter so you can compare estimates across the
examples.

98 10 Combining multi-site and subpopulation data

Example 10.1 code
Type RShowDoc("Case_study_2.R",package="MARSS") to open a file with all the

example code.

#Read in data

dat=t(harborSealWA) #Transpose since MARSS needs time ACROSS columns

years = dat[1,]

n = nrow(dat)-1

dat = dat[2:nrow(dat),]

legendnames = (unlist(dimnames(dat)[1]))

#estimate parameters

Z.model = factor(c(1,1,1,1,1))

R.model = "diagonal and unequal"

kem1 = MARSS(dat, model=

list(Z=Z.model, R=R.model))

#make figure

matplot(years, t(dat),xlab="",ylab="index of log abundance",

pch=c("1","2","3","4","5"),ylim=c(5,9),bty="L")

lines(years,kem1$states-1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states+1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states,type="l",lwd=2)

title("Observations and total population estimate",cex.main=.9)

#show just the estimated parameter elements

kem1$par

#show the parameters matrices with fixed and estimated elements

parmat(kem1)

#show the log-likelihood and AIC

kem1$logLik

kem1$AIC

10.3 Different observation error structures

The variable kem1parR contains the estimates of the observation error vari-
ances. It is a column vector of just the estimated values in R. If we want to
see the full R matrix, we use the function parmat(). Here is the estimated R
matrix for our first model:

parmat(kem1,"R")

10.3 Different observation error structures 99

$R

[,1] [,2] [,3] [,4] [,5]

[1,] 0.03229417 0.00000000 0.00000000 0.00000000 0.0000000

[2,] 0.00000000 0.03527748 0.00000000 0.00000000 0.0000000

[3,] 0.00000000 0.00000000 0.01352073 0.00000000 0.0000000

[4,] 0.00000000 0.00000000 0.00000000 0.01082157 0.0000000

[5,] 0.00000000 0.00000000 0.00000000 0.00000000 0.1960897

Notice that the variances along the diagonal are all different—we estimated
five unique observation variances. We might be able to improve the fit (relative
to the number of estimated parameters) by assuming that the observation
variance is equal across regions but the errors are independent. This means
we estimate one observation variance instead of five. This is a fairly standard
assumption for data that come from the uniform survey methodology4.

To impose this model, we set the R model to

R.model="diagonal and equal"

This tells MARSS that all the r’s along the diagonal in R are the same. To fit
this model to the data, call MARSS() as:

Z.model = factor(c(1,1,1,1,1))

R.model = "diagonal and equal"

kem2 = MARSS(dat, model=list(Z=Z.model, R=R.model))

We estimated one initial x, one process variance, one u, four a’s, and one
observation variance. So K = 8 parameters. The AIC for this new model com-
pared to the old model with five observation variances is:

c(kem1$AIC,kem2$AIC)

[1] -9.323982 8.813447

A smaller AIC means a better model. The difference between the one observa-
tion variance versus the unique observation variances is >10, suggesting that
the unique observation variances model is better.

One of the key diagnostics when you are comparing fits from multiple
models is whether the model is flexible enough to fit the data. This can be
checked by looking for temporal trends in the the residuals between the esti-
mated population states (e.g. kem2$states) and the data. In Figure 10.3, the
residuals for the second analysis are shown. Ideally, these residuals should not
have a temporal trend. They should look cloud-like. The fact that the resid-
uals have a strong temporal trend is an indication that our one population
model is too restrictive for the data5.

Example 10.2 (Fit a model with shared observation variances)

4 By the way, this is not a good assumption for these data since the number haul-
outs in each region varies and the regional counts are the sums across all haul-outs

100 10 Combining multi-site and subpopulation data

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

5 10 15

−
0.

4
0.

0
0.

2

Index

re
si

du
al

s

SJI

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

1
0.

2

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

●
● ● ●

2 4 6 8

−
0.

2
0.

0
0.

1
0.

2

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

4
0.

0
0.

4
0.

8

Index

re
si

du
al

s

HC

Fig. 10.3. Residuals for the model with a single population. The plots of the resid-
uals should not have trends with time, but they do... This is an indication that the
single population model is inconsistent with the data. The code to make this plot is
given in the script file for this case study.

Analyze the data using the same population model as in Example 10.1, but
constrain the R matrix so that all five census regions have the same observation
variance. The Example 10.2 code shows you how to do this. It also shows you
how to make the diagnostics figure (Figure 10.3).

in a region. We will see that this is a poor assumption when we look at the AIC
values.

5 When comparing models via AIC, it is important that you only compare models
that are flexible enough to fit the data. Fortunately if you neglect to do this,
the inadequate models will usually have very high AICs and fall out of the mix
anyhow.

10.4 Two subpopulations, north and south 101

Example 10.2 code
Type RShowDoc("Case_study_2.R",package="MARSS") to open a file with all the

example code.

#fit model

Z.model = factor(c(1,1,1,1,1))

R.model = "diagonal and equal"

kem2 = MARSS(dat, model=

list(Z=Z.model, R=R.model))

#show the estimated parameter elements

kem2parU #population growth rate

kem2parQ #process variance

kem2parR #observation variance

kem2$logLik #log likelihood

c(kem1$AIC,kem2$AIC)

#plot residuals

plotdat = t(dat)

matrix.of.biases = matrix(parmat(kem2)$A,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

xs = matrix(kem2$states,

nrow=dim(plotdat)[1],ncol=dim(plotdat)[2],byrow=F)

resids = plotdat-matrix.of.biases-xs

par(mfrow=c(2,3))

for(i in 1:n){

plot(resids[!is.na(resids[,i]),i],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

10.4 Two subpopulations, north and south

For the third analysis, we will change our assumption about the structure
of the population. We will assume that there are two subpopulations, north
and south, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan
Islands) fall in the north subpopulation and regions 3, 4 and 5 fall in the south
subpopulation. For this analysis, we will assume that these two subpopulations
share their growth parameter, u, and process variance, q, since they share
a similar environment and prey base. However we postulate that because of
fidelity to natal rookeries for breeding, animals do not move much year-to-year
between the north and south and the two subpopulations are independent.

102 10 Combining multi-site and subpopulation data

We need to write down the state-space model to reflect this population
structure. There are two subpopulations, xn and xs, and they have the same
growth rate u: [

xn,t
xs,t

]
=

[
xn,t−1
xs,t−1

]
+

[
u
u

]
+

[
wn,t
ws,t

]
(10.6)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process errors) come from a multivariate normal
with no covariance:

[
wn,t
ws,t

]
∼MV N

([
0
0

]
,

[
q 0
0 q

])
(10.7)

For the observation process, we use the Z matrix to associate the regions
with their respective xn and xs values:




y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0
1 0
0 1
0 1
0 1




[
xn,t
xs,t

]
+




0
a2
0
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




(10.8)

10.4.1 Specifying the MARSS() arguments

We need to change the Z model to specify that there are two subpopulations
(north and south), and that regions 1 and 2 are in the north subpopulation
and regions 3,4 and 5 are in the south subpopulation. There are a few ways,
we can specify this Z matrix for MARSS():

Z.model = matrix(c(1,1,0,0,0,0,0,1,1,1),5,2)

Z.model = factor(c(1,1,2,2,2))

Z.model = factor(c("N","N","S","S","S"))

Which you choose is a matter of preference as they all specify the same form
for Z.

We also want to specify that the u’s are the same for each subpopulation
and that Q is diagonal with equal q’s. To do this, we set

U.model = "equal"

Q.model = "diagonal and equal"

This says that there is one u and one q parameter and both subpopulations
share it (if we wanted the u’s to be different, we would use U.model="unequal"
or leave off the u model since the default behavior is U.model="unequal").

Now we specify the new model structures and fit this model to the data:

Z.model = factor(c(1,1,2,2,2))

U.model = "equal"

Q.model = "diagonal and equal"

10.4 Two subpopulations, north and south 103

R.model = "diagonal and equal"

kem3 = MARSS(dat, model=list(Z=Z.model,

R=R.model, U=U.model, Q=Q.model))

Success! abstol and log-log tests passed at 32 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 32 iterations.

Log-likelihood: 11.65243

AIC: -7.304859 AICc: -4.982278

Estimate

A.2 0.79883

A.4 -0.77932

A.5 -0.84626

R.R(diag) 0.02929

U.U 0.05029

Q.Q(diag) 0.00762

x0.x0,1 6.06937

x0.x0,2 6.85729

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Figure 10.4 shows the residuals for the two subpopulations case. The resid-
uals look better (more cloud-like) but the Hood Canal residuals are still tem-
porally correlated.

Example 10.3 (Fit a model with north and south subpopulations)

Analyze the data using a model with two subpopulations, northern and south-
ern. Assume that the subpopulation are independent (diagonal Q), however
let each subpopulation share the same population parameters, u and q. The
Example 10.3 code shows how to set the MARSS() arguments for this case.

104 10 Combining multi-site and subpopulation data

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

5 10 15

−
0.

15
0.

00
0.

10

Index

re
si

du
al

s

SJI

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

5 10 15

−
0.

2
0.

0
0.

1

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

● ● ●
●

2 4 6 8

−
0.

3
−

0.
1

0.
1

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

2
0.

2
0.

4

Index

re
si

du
al

s

HC

Fig. 10.4. The residuals for the analysis with a north and south subpopulation. The
plots of the residuals should not have trends with time. Compare with the residuals
for the analysis with one subpopulation.

Example 10.3 code
Type RShowDoc("Case_study_2.R",package="MARSS") to open a file with all the

example code.

#fit model

Z.model = factor(c(1,1,2,2,2))

U.model = "equal"

Q.model = "diagonal and equal"

R.model = "diagonal and equal"

kem3 = MARSS(dat, model=list(Z=Z.model,

R=R.model, U=U.model, Q=Q.model))

#plot residuals

plotdat = t(dat)

matrix.of.biases = matrix(parmat(kem3)$A,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

par(mfrow=c(2,3))

for(i in 1:n){

j=c(1,1,2,2,2)

xs = kem3$states[j[i],]

resids = plotdat[,i]-matrix.of.biases[,i]-xs

plot(resids[!is.na(resids)],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

10.5 Other population structures 105

10.5 Other population structures

Now work through a number of different structures and fill out the table at
the back of this case study. At the end you will see how your estimation of
the mean population growth rate varies under different assumptions about
the population and the data.

Example 10.4 (Five subpopulations)

Analyze the data using a model with five subpopulations, where each of
the five census regions is sampling one of the subpopulations. Assume that
the subpopulation are independent (diagonal Q), however let each subpopu-
lation share the same population parameters, u and q. The Example 10.4
code shows how to set the MARSS() arguments for this case. You can use
R.model="diagonal and equal" to make all the observation variances equal.

Example 10.4 code
Type RShowDoc("Case_study_2.R",package="MARSS") to open a file with all the

example code.

Z.model=factor(c(1,2,3,4,5))

U.model="equal"

Q.model="diagonal and equal"

R.model="diagonal and unequal"

kem=MARSS(dat, model=list(Z=Z.model,

U=U.model, Q=Q.model, R=R.model))

Example 10.5 (Two subpopulations with different population pa-
rameters)

Analyze the data using a model that assumes that the Strait of Juan de Fuca
and San Juan Islands census regions represent a northern Puget Sound sub-
population, while the other three regions represent a southern Puget Sound
subpopulation. This time assume that each population trajectory (north and
south) has different u and q parameters: un,us and qn,qs. Also assume that
each of the five census regions has a different observation variance. Try
to write your own code. If you get stuck (or want to check your work,
you can open a script file with all the Case Study 2 examples by typing
RShowDoc("Case_study_2.R",package="MARSS") at the R command line.

106 10 Combining multi-site and subpopulation data

In math form, this model is:

[
xn,t
xs,t

]
=

[
xn,t−1
xs,t−1

]
+

[
un
us

]
+

[
wn,t
ws,t

]
,

[
wn,t
ws,t

]
∼ MVN

(
0,
[

qn 0
0 qs

])
(10.9)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0
1 0
0 1
0 1
0 1




[
xn,t
xs,t

]
+




0
a2
0
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




(10.10)

Example 10.6 (Hood Canal covaries with the other regions)

Analyze the data using a model with two subpopulations with the divisions
being Hood Canal versus everywhere else. In math form, this model is:

[
xp,t
xh,t

]
=

[
xp,t−1
xh,t−1

]
+

[
up
uh

]
+

[
wp,t
wh,t

]
,

[
wp,t
wh,t

]
∼ MVN

(
0,
[

q c
c q

])
(10.11)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0
1 0
1 0
1 0
0 1




[
xp,t
xh,t

]
+




0
a2
a3
a4
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




(10.12)

To specify that Q has one value on the diagonal (one variance) and one value
on the off-diagonal (covariance) you can specify Q.model two ways:

Q.model = "equalvarcov"

Q.model = matrix(c("q","c","c","q"),2,2)

Example 10.7 (Three subpopulations with shared parameter values)

Analyze the data using a model with three subpopulations as follows: north
(regions 1 and 2), south (regions 3 and 4), Hood Canal (region 5). You can
specify that some subpopulations share parameters while others do not. First,
let’s specify that each population is affected by independent environmental vari-
ability, but that the variance of that variability is the same for the two interior
populations:

10.6 Discussion 107

Q.model=matrix(list(0),3,3)

diag(Q.model)=c("coastal","interior","interior")

print(Q.model)

Notice that Q is a diagonal matrix (independent year-to-year environmental
variability) but the variance of two of the populations is the same. Notice too
that the off-diagonal terms are numeric; they do not have quotes. We specified
Q using a matrix of class list, so that we could have numeric values (fixed)
and character values (estimated parameters).

In a similar way, we specify that the observation errors are independent but
that estimates from a plane do not have the same variance as those from a
boat:

R.model=matrix(list(0),5,5)

diag(R.model)=c("boat","boat","plane","plane","plane")

For the long-term trends, we specify that x1 and x2 share a long-term trend
(“puget sound”) while x3 is allowed to have a separate trend (“hood canal”).

U.model=matrix(c("puget sound","puget sound","hood canal"),3,1)

10.6 Discussion

There are a number of corners that we cut in order to have case study code
that runs quickly:

� We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since the EM algorithm is
a “hill-climbing” algorithm, this ensures that it does not get stuck on a
local maxima. MARSS() will do this for you if you pass it the argument
control=list(MCInit=TRUE). This will use a Monte Carlo routine to try
many different initial conditions. See the help file on MARSS() for more
information (by typing ?MARSS at the R prompt).

� We assume independent observation and process errors. Depending on your
system, observation errors may be driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad
for your analysis. Unfortunately, separating covariance across observation

108 10 Combining multi-site and subpopulation data

versus process errors will require much data (to have any power). In prac-
tice, the first step is to think hard about what drives sightability for your
species and what are the relative levels of process and observation vari-
ance. You may be able to subsample your data in a way that will make
the observation errors more independent.

� The MARSS() argument control specifies the options for the EM algo-
rithm. We left the default tolerance for the convergence test. You would
want to set this lower for a real analysis. You will need to up the maxit

argument correspondingly.
� We used the large-sample approximation for AIC instead of a bootstrap

AIC that is designed to correct for small sample size in state-space mod-
els. The bootstrap metric, AICb, takes a long time to run. Use the call
MARSSaic(kem, output=c("AICbp")) to compute AICb. We could have
shown AICc, which is the small-sample size corrector for non-state-space
models. Type kem$AICc to get that.

Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models
in your analysis that have no biological basis. In practice, we spend a lot of
time discussing the population structure with biologists working on the species
and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that pre-specified
structure and using all the data to get parameter estimates for forecasting.

10.6 Discussion 109

Results table

pop. growth process K log-like
Ex. rate variance kem$num. kem$ AIC

kemparU kemparQ params logLik kem$AIC

1 one population
different obs. vars

uncorrelated
2 one population

identical obs vars
uncorrelated

3 N+S subpops
identical obs vars

uncorrelated;
4 5 subpops

unique obs vars
u’s + q’s identical

5 N+S subpops
unique obs vars

u’s + q’s identical
6 PS + HC subpops

unique obs vars
u’s + q’s unique

7 N + S + HC subpops
unique obs vars
u’s + q’s unique

For AIC, lower is better and only the relative differences matter. A differ-
ence of 10 between two AICs means substantially more support for the model
with lower AIC. A difference of 30 or 40 between two AICs is very large.

Questions

1. Do different assumptions about whether the observation error variances
are all identical versus different affect your estimate of the long-term pop-
ulation growth rate (u)? You may want to rerun examples 3-7 with the
R.model changed. R.model="diagonal and unequal" means measure-
ment variances all different versus "diagonal and equal".

2. Do assumptions about the underlying structure of the population affect
your estimates of u? Structure here means number of subpopulations and
which areas are in which subpopulation.

110 10 Combining multi-site and subpopulation data

3. The confidence intervals for the first two analyses are very tight because
the estimated process variance, kem1parQ, was very small. Why do you
think process variance (q) was forced to be so small? [Hint: We are forc-
ing there to be one and only one true population trajectory and all the
observation time series have to fit that one time series. Look at the AICs
too.]

11

Case Study 3: Identifying spatial population
structure and covariance

11.1 Harbor seals on the U.S. west coast

In this case study, we use time series of observations from nine sites along
the west coast to examine large-scale spatial structure in harbor seals (Jeffries
et al., 2003). Harbor seals are distributed along the west coast of the U.S.
from California to Washington. The populations in Oregon and Washington
have been surveyed for over 25 years at a number of haul-out sites (Figure
11.1). In general, these populations have been increasing steadily since the
1972 Marine Mammal Protection Act. It remains unknown whether they are
at carrying capacity.

For management purposes, two stocks are recognized; the coastal stock
consists of four sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), and the inland WA stock consists of the remaining five sites (Fig-
ure 11.1). Subtle differences exist in the demographics across sites (e.g. pup-
ping dates), however mtDNA analyses and tagging studies have suggested that
these sites may be structured on a much larger scale. Harbor seals are known
for strong site fidelity, but at the same time travel large distances to forage.

Our goal for this case study is to address the following questions about
spatial structure: 1) Does population abundance data support the existing
management boundaries, or are there alternative groupings that receive more
support? and 2) Does the Hood Canal site represent a distinct subpopula-
tion? To address these questions, we will mathematically formulate differ-
ent hypotheses about population structure via different MARSS models; each
model represents a different population structure. We will then compare the
data support for different models using model selection criteria, specifically
AIC.

Type RShowDoc("Case_study_3.R",package="MARSS") to open a file with
the R code to get you started on the analyses in this chapter.

112 11 Using MARSS models to identify spatial population structure and covariance
Figure 01. Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.

Southern Coast

Northern Coast

Coastal Estuaries

Olympic
Peninsula

Juan de Fuca
San Juans

H ood Canal

Puget Sound

Eastern Bays

Fig. 11.1. Map of spatial distribution of 9 harbor seal sites in Washington and
Oregon.

11.2 How many distinct subpopulations?

We will analyze the support for five hypotheses about the population struc-
ture. These do not represent all possible structures but instead represent those
that are considered most biologically plausible given the geography and the
behavior of harbor seals.

Hypothesis 1 Sites are grouped by stock (m = 2), unique process variances
Hypothesis 2 Sites are grouped by stock (m = 2), same process variance
Hypothesis 3 Sites are grouped by state (m = 2), unique process variances
Hypothesis 4 Sites are grouped by state (m = 2), same process variance
Hypothesis 5 All sites are part of the same panmictic population (m = 1)

Aerial survey methodology has been relatively constant across time and
space, and we will assume that all sites have identical and independent obser-
vation error variance.

11.2 How many distinct subpopulations? 113

11.2.1 Specify the design, Z, matrices

Write down the Z matrices for the hypotheses. Hint: Hypothesis 1 and 2 have
the same Z matrix, Hypothesis 3 and 4 have the same Z matrix and Hypothesis
5 is a column of 1s.

H 1 and 2 H 3 and 4 H 5
Z Z Z

subpop subpop subpop subpop subpop
1 2 1 2 1

Coastal Estuaries

Olympic Peninsula

Str. Juan de Fuca

San Juan Islands

Eastern Bays

Puget Sound

Hood Canal

OR North Coast

OR South Coast



















Next you need to specify the model argument so that MARSS knows the
structure of your Z’s. The Z model will be a vector of factors, i.e. it will have
the form factor(c(....)).

� Hypothesis 1 and 2: Z.model=
� Hypothesis 3 and 4: Z.model=
� Hypothesis 5: Z.model=

11.2.2 Specify the grouping arguments

For this case study, we will assume that subpopulations share the same growth
rate. What should U.model be for each hypothesis? To specify shared u param-
eters, U.model is set as a character vector where shared elements in u have the
same character name. Written in R it takes the form matrix(c(#,#,...),m,1)

� Hypothesis 1-4: U.model=
� Hypothesis 5: U.model=

What about Q.model? To specify a diagonal Q matrix with shared values
along the diagonal, we will need to have a matrix with numeric values (0) on
the off-diagonals and character values (names of parameters to estimate) on
the diagonal. We do this with a matrix of class list.

114 11 Using MARSS models to identify spatial population structure and covariance

Q.model=matrix(list(0),m,1)

diag(Q.model)=c("q1","q1","q2","q2","...")

Notice that first, we set up Q.model as a list matrix with numeric 0s every-
where and then set the diagonals to a vector of character strings. Character
strings that are the same are shared (identical) values.

Look at each hypothesis (above) and write down R code for the corre-
sponding Q.model.

� Hypothesis 1: Q.model=
� Hypothesis 2: Q.model=
� Hypothesis 3: Q.model=
� Hypothesis 4: Q.model=
� Hypothesis 5: Q.model=

Lastly, specify R.model. As we mentioned above, we will assume that the
observation errors are independent and the observation variance is the same
across sites. You can specify this model with the text string "equal".

� Hypothesis 1-5: R.model=

11.2.3 Fit models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.R for the code to load the data). Each call to MARSS() will
look like

kem = MARSS(sealData, model=list(Z = Z.model,

Q = Q.model, R = R.model, U = U.model))

Fill in the following table, by fitting the five state-space models—for the five
hypotheses—to the harbor seal data (using MARSS()). Use the Case_Study_3.R
script so you do not have to type in all the commands.

11.2.4 Interpret results for question 1

What do these results indicate about the process error grouping and spatial
grouping? A lower AIC means a more parsimonious model (highest likelihood
given the number of parameters). A difference of 10 between AICs is large, and
means the model with the higher AIC is unsupported relative to the model
with lower AIC.

Extra analysis (if you have time): Do your results change if you assume
that observation errors are independent but have unique variances? The nine
sites have different numbers of haul-outs and so the observation variances

11.3 Is Hood Canal separate? 115

Table 11.1. Table to fill out for the five hypotheses from the first analysis (Section
11.2). The code of the form foobar shows you what to type at the command line
to output each parameter or metric. Remember to add the name of the model fit,
e.g. kemfoobar where kem is the name you gave to the model fit.

pop. growth K
H rate proc. variance obs. variance $num. log-like AIC AICc

parU parQ parR params $logLik $AIC $AICc

1

2

3

4

5

might be different. Repeat the analysis with unique observation variances
for each site (this means changing R.model). You can also try the analysis
with temporally co-varying subpopulations (good and bad years correlated)
by setting Q.model="unconstrained" or Q.model="equalvarcov".

11.3 Is Hood Canal separate?

The Hood Canal site may represent a distinct population, and has recently
experienced a number of catastrophic events (hypoxic events, possibly lead-
ing to reduced prey availability, and several killer whale predation events,
removing up to 50% of animals per occurrence). Build four models, assuming
that each site (other than Hood Canal) is assigned to its current management
stock, but Hood Canal is a different subpopulation (m = 3). Again, assume
that observation error variance is identical and independent across sites.

Hypothesis 1 Subpopulations have the same process variance and growth rate
Hypothesis 2 Each subpopulation has a unique process variance and growth

rate
Hypothesis 3 Hood Canal has the same process variance but different growth

rate
Hypothesis 4 Hood Canal has unique process variance and unique growth rate

116 11 Using MARSS models to identify spatial population structure and covariance

11.3.1 Specify the Z matrix and Z.model

The Z matrix for each hypothesis is the same. The coastal subpopulation
consists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), the Hood Canal subpopulation is the Hood Canal site, and the
inland WA subpopulation consists of the remaining 4 sites. Thus m = 3 and
Z is a 9×3 matrix:

subpop subpop subpop
1 2 3

Coastal Estuaries

Olympic Peninsula

Str. Juan de Fuca

San Juan Islands

Eastern Bays

Puget Sound

Hood Canal

OR North Coast

OR South Coast







Then write down Z.model for this Z: factor(c(...))

11.3.2 Specify which parameters are shared across which
subpopulations

U.groups specifies which u are shared across subpopulations. Look at the
hypothesis descriptions above which will specify whether subpopulations share
their population growth rate or have unique population growth rates.

� Hypothesis 1: U.model=
� Hypothesis 2: U.model=
� Hypothesis 3: U.model=
� Hypothesis 4: U.model=

U.model will be a m×1 matrix of character strings; matrix(c("c1","c2","...."),m,1)
Once you have more than two subpopulations, it can get hard to keep straight
which U.model goes to which subpopulation. It is best to sketch your Z matrix
(which tells you which site in the rows corresponds to which subpopulation
in the columns). Then remember that the elements of U.model correspond
one-to-one with the columns of Z:

U.model=matrix(c(col 1 Z, col 2 Z, col 3 Z, ..),m,1).
Specify Q.groups showing which subpopulations share their process vari-

ance parameter.

11.3 Is Hood Canal separate? 117

� Hypothesis 1: Q.model=
� Hypothesis 2: Q.model=
� Hypothesis 3: Q.model=
� Hypothesis 4: Q.model=

Q.model will be specified using the matrix of class list again. For example,

Q.model=matrix(list(0),3,3)

diag(Q.model)=c("q1","q2","q3")

R.model is set so that the observation variances are the same for each site.

11.3.3 Fit the models and summarize results

Fit each model for each hypothesis to the seal data. Each call to MARSS() will
look like

kem = MARSS(sealData, model=list(Z = Z.model,

Q = Q.model, R = R.model, U = U.model))

Table 11.2. Table to fill out for the four hypotheses from the second analysis (Sec-
tion 11.3). The code of the form foobar shows you what to type at the command
line to output each parameter or metric. Remember to add the name of the model
fit, e.g. kemfoobar where kem is the name you gave to the model fit.

pop. growth K
H rate proc. variance obs. variance $num. log-like AIC AICc

parU parQ parR params $logLik $AIC $AICc

1

2

3

4

118 11 Using MARSS models to identify spatial population structure and covariance

11.3.4 Interpret results for question 2

How do the residuals for the Hood Canal site compare from these models
relative to the best model from question 1? Hint: If you have the vector of
estimated population states (Xpred = t(kem$states)) and the data (Xobs =

sealData), the residuals for site i can be plotted in R as:

Xpred = t(kem$states)

Xobs = sealData

plot(Xpred[, Z.model[i]] - Xobs[,i],

ylab="Predicted-Observed Data")

In R , if you have a matrix Y[1:numYrs, 1:n], you can extract column j by
writing Yj = Y[,j].

Relative to the previous models from question 1, do these scenarios have
better or worse AIC scores (smaller AIC is better)? If you were to provide
advice to managers, would you recommend that the Hood Canal population is
a source or sink? What implications does this have for population persistence?

Code for Case Study 3
Type RShowDoc("Case_study_3.R",package="MARSS") to open a file in R
with all the example code.

12

Case Study 4: Dynamic factor analysis (DFA)

12.1 Overview of dynamic factor analysis

In this case study, we use MARSS to do dynamic factor analysis (DFA), which
allows us to look for a set of common underlying trends among a relatively
large set of time series (Harvey, 1989, sec. 8.5). This is conceptually different
than what we have been doing in the previous case studies. Here we are trying
to explain temporal variation in a set of n time series using linear combinations
of a set of m hidden random walks, where m << n. Zuur et al. (2003) show a
number of examples of DFA applied to fisheries catch data and densitites of
zoobenthos.

A DFA model is a type of MARSS model with the following structure:

xt = xt−1 + wt where wt ∼ MVN(0,Q)

yt = Zxt + a + vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(12.1)

The general idea is that the observations (y) are modeled as a linear combi-
nation of hidden trends (x) and factor loadings (Z) plus some offsets (a). The
DFA model in Equation 12.11 and the standard MARSS model in Equation
1.1 are equivalent–we have simply set the matrix B an m×m identity matrix
(i.e., a diagonal matrix with 1’s on the diagonal and 0’s elsewhere) and the
vector u = 0.

12.1.1 Writing out a DFA model in MARSS form

Imagine a case where we had a data set with six observed time series (n = 6)
and we want to fit a model with three hidden trends (m = 3). If we write out
our DFA model in MARSS matrix form (ignoring the error structures and
initial conditions for now), it would look like this:

120 12 Using MARSS to do dynamic factor analysis




x1,t
x2,t
x3,t


=




1 0 0
0 1 0
0 0 1






x1,t−1
x2,t−1
x3,t−1


+




0
0
0


+




w1,t
w2,t
w3,t







y1,t
y2,t
y3,t
y4,t
y5,t
y6,t




=




z11 z12 z13
z21 z22 z23
z31 z32 z33
z41 z42 z43
z51 z52 z53
z61 z62 z63







x1,t
x2,t
x3,t


+




a1
a2
a3
a4
a5
a6




+




v1,t
v2,t
v3,t
v4,t
v5,t
v6,t




.

(12.2)

The process errors of the hidden trends would be




w1,t
w2,t
w3,t


∼ MVN






0
0
0


 ,




q11 q12 q13
q12 q22 q23
q13 q23 q33




 , (12.3)

and the observation errors would be




v1,t
v2,t
v3,t
v4,t
v5,t
v6,t



∼ MVN







0
0
0
0
0
0



,




r11 r12 r13 r14 r15 r16
r12 r22 r23 r24 r25 r26
r13 r23 r33 r34 r35 r36
r14 r24 r34 r44 r45 r46
r15 r25 r35 r45 r55 r56
r16 r26 r36 r46 r56 r66







. (12.4)

12.1.2 Constraints to ensure identifiability

If Z, a, and Q in Equation 12.11 are not constrained, then the DFA model
above is unidentifiable (Harvey, 1989, sec 4.4). Harvey (1989, sec. 8.5.1), sug-
gests the following parameter constraints to make the model identifiable:

� in the first m−1 rows of Z, the z-value in the j-th column and i-th row is
set to zero if j > i;

� a is constrained so that the first m values are set to zero; and
� Q is set equal to the identity matrix (Im).

Zuur et al. (2003), however, note that with Harvey’s second constraint, the
EM algorithm is not particularly robust, and it takes a long time to converge.
Zuur et al. show that the EM estimates are much better behaved if you instead
constrain each of the time-series in x to have a mean of zero across t = 1 to
T . To do so, replace the estimates of the hidden states, xT

t , coming out of
the Kalman smoother with xT

t − x̄ for t = 1 to T (NOTE : x̄ is the mean of
xt across t, not m). With this approach, you estimate all of the a elements,
which represent the average level of yt relative to Z(xt − x̄) (However, we will

12.2 The data 121

demean our data and thus will set a to zero). Forcing the hidden states to
have a mean of zero is easily implemented in the MARSS() function by setting
the control value demean.states=TRUE.

Using these constraints, the DFA model in Equation 12.2 becomes




x1,t
x2,t
x3,t


=




1 0 0
0 1 0
0 0 1






x1,t−1
x2,t−1
x3,t−1


+




0
0
0


+




w1,t
w2,t
w3,t







y1,t
y2,t
y3,t
y4,t
y5,t
y6,t




=




z11 0 0
z21 z22 0
z31 z32 z33
z41 z42 z43
z51 z52 z53
z61 z62 z63







x1,t
x2,t
x3,t


+




a1
a2
a3
a4
a5
a6




+




v1,t
v2,t
v3,t
v4,t
v5,t
v6,t




.

(12.5)

The process errors of the hidden trends in Equation 12.3 would then become




w1,t
w2,t
w3,t


∼ MVN






0
0
0


 ,




1 0 0
0 1 0
0 0 1




 , (12.6)

but the observation errors in Equation 12.4 would stay the same, such that




v1,t
v2,t
v3,t
v4,t
v5,t
v6,t



∼ MVN







0
0
0
0
0
0



,




r11 r12 r13 r14 r15 r16
r12 r22 r23 r24 r25 r26
r13 r23 r33 r34 r35 r36
r14 r24 r34 r44 r45 r46
r15 r25 r35 r45 r55 r56
r16 r26 r36 r46 r56 r66







. (12.7)

To complete our model, we still need the final form for the initial conditions
of the state. Following Zuur et al. (2003), we set the initial state vector (x0)
to have zero mean and a diagonal variance-covariance matrix with large vari-
ances, such that

x0 ∼ MVN






0
0
0


 ,




5 0 0
0 5 0
0 0 5




 . (12.8)

12.2 The data

For this case study, we will analyze some of the Lake Washington plank-
ton data included in the MARSS package. This dataset includes 33 years of

122 12 Using MARSS to do dynamic factor analysis

monthly counts for 13 plankton species along with data on water temperature,
total phosphorous (TP), and pH. First, we load the data and then extract a
subset of columns corresponding to the phytoplankton species only.

load the data

data(lakeWAplankton)

use only the data from 1977 onward

dat.spp.1977 = lakeWAplankton[lakeWAplankton[,"Year"]>=1977,]

create vector of phytoplankton group names

phytoplankton = c("Cryptomonas", "Diatoms", "Greens",

"Bluegreens", "Unicells", "Other.algae")

get only the phytoplankton

dat.spp.1977 = dat.spp.1977[,phytoplankton]

Next, we transpose the data and calculate the number of time series and their
length.

transpose data so time goes across columns

dat.spp.1977 = t(dat.spp.1977)

get number of time series

N.ts = dim(dat.spp.1977)[1]

get length of time series

TT = dim(dat.spp.1977)[2]

It is normal in this type of analysis to standardize each time series by first
substracting its mean and then dividing by its standard deviation (i.e., create
a z -score y∗t with mean = 0 and SD = 1), such that

y∗t = Σ−1(yt − ȳ),

Σ is a diagonal matrix with the standard deviations of each time series along
the diagonal, and ȳ is a vector of the means. In R , this can be done as follows

Sigma = sqrt(apply(dat.spp.1977, 1, var, na.rm=TRUE))

y.bar = apply(dat.spp.1977, 1, mean, na.rm=TRUE)

dat.z = (dat.spp.1977 - y.bar) * (1/Sigma)

rownames(dat.z) = rownames(dat.spp.1977)

Figure 12.1 shows time series of Lake Washington phytoplankton data follow-
ing z -score transformation.

12.3 Setting up the model in MARSS

As we have seen in other cases, setting up the model structure for MARSS
requires that the parameter matrices have a one-to-one correspondence to the
model as you would write it on paper (i.e., Equations 12.5 through 12.8). If a
parameter matrix has a combination of fixed and estimated values, then you

12.3 Setting up the model in MARSS 123

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●●●
●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●
●
●

●

●
●●
●

●

●

●

●●

●
●

●●
●
●

●

●

●
●
●
●●●

●

●
●
●
●

●

●

●
●●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●

●

●

●
●

●●

●

●

●

●

−
4

−
2

0
1

2

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Cryptomonas

●●
●

●

●

●
●

●

●●

●
●●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

−
2

−
1

0
1

2

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Diatoms

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●●●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●
●

●●

●

●

●

●

●
●

●●

−
3

−
1

0
1

2
3

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Greens

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●
●

●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●

●

●

●●●

●
●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

−
2

−
1

0
1

2

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Bluegreens

●

●
●

●

●

●
●

●

●
●●●●

●

●

●
●

●
●

●
●●

●●●

●●●
●

●

●

●
●●●●

●
●

●
●●

●
●
●●●
●

●
●●

●
●
●

●●

●
●●

●●●●

●●

●

●
●
●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●●●
●
●●
●
●
●

●

●
●
●
●

●●

●

●

●

●

●
●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●
●
●●●

●

●

●

●●
●

●

●
●●●●●●

●●
●

●

●●

●

●

●●●●
●
●

●
●●

●

●●●
●
●
●●

●●
●

●

●

●

●●●
●
●●

●

−
4

−
2

0
1

2

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Unicells

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●●
●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●

●
●

●●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●

●
●

●

●

●

●

−
2

−
1

0
1

2

A
bu

nd
an

ce
 in

de
x

1977 1980 1983 1986 1989 1992 1995

Other.algae

Fig. 12.1. Time series of Lake Washington phytoplankton data following z -score
transformation.

specify that using matrix(list(), nrow, ncol). This is a matrix of class list
and allows you to combine numeric and character values in a single matrix.
MARSS recognizes the numeric values as fixed values and the character values
as estimated values.
This is how we set up Z for MARSS:

Z.vals = list(

"z11", 0 , 0 ,

"z21","z22", 0 ,

"z31","z32","z33",

"z41","z42","z43",

"z51","z52","z53",

"z61","z62","z63")

Z = matrix(Z.vals, nrow=N.ts, ncol=3, byrow=TRUE)

When specifying the list values, spacing and carriage returns were added to
help show the correspondence with the Z matrix in Equation 12.3. If you print
Z (at the R command line), you will see that it is a matrix with character
values (the estimated elements) and numeric values (the fixed 0’s).

124 12 Using MARSS to do dynamic factor analysis

print(Z)

[,1] [,2] [,3]

[1,] "z11" 0 0

[2,] "z21" "z22" 0

[3,] "z31" "z32" "z33"

[4,] "z41" "z42" "z43"

[5,] "z51" "z52" "z53"

[6,] "z61" "z62" "z63"

Notice that the 0’s do not have quotes around them. If they did, it would
mean the "0" is a character value and would be interpreted as the name of a
parameter to be estimated rather than a fixed numeric value.
The parameter vector a is set up similarly.

A.vals = list("a1","a2","a3","a4","a5","a6")

A = matrix(A.vals, nrow=N.ts, ncol=1)

However, there are no missing values in the Lake Washington plankton dataset
and we have demeaned the data. Therefore we can set a = 0.
The Q and B matrices are both set equal to the identity matrix using diag().

Q = B = diag(1,3)

For our first analysis, we will assume that each time series of phytoplankton
has a different observation variance, but that there is no covariance among
time series. Thus, R should be a diagonal matrix that looks like:




r11 0 0 0 0 0
0 r22 0 0 0 0
0 0 r33 0 0 0
0 0 0 r44 0 0
0 0 0 0 r55 0
0 0 0 0 0 r66




,

and each of the Ri,i values is a different parameter to be estimated. We can
also specify this R structure using a list matrix as follows:

R.vals = list(

"r11",0,0,0,0,0,

0,"r22",0,0,0,0,

0,0,"r33",0,0,0,

0,0,0,"r44",0,0,

0,0,0,0,"r55",0,

0,0,0,0,0,"r66")

R = matrix(R.vals, nrow=N.ts, ncol=N.ts, byrow=TRUE)

You can print R at the R command line to see what it looks like:

12.3 Setting up the model in MARSS 125

print(R)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "r11" 0 0 0 0 0

[2,] 0 "r22" 0 0 0 0

[3,] 0 0 "r33" 0 0 0

[4,] 0 0 0 "r44" 0 0

[5,] 0 0 0 0 "r55" 0

[6,] 0 0 0 0 0 "r66"

This form of variance-covariance matrix is commonly used, and therefore
MARSS has a built-in shorthand for this structure. Alternatively, we could
simply type:

R = "diagonal and unequal"

As mentioned in earlier chapters, there are other shorthand notations for many
of the common parameter structures. Type ?MARSS at the R command line
to see a list of the shorthand options for each parameter vector/matrix.

The parameter vectors π (termed x0 in MARSS) and u are each set to be
a column vector of zeros. Either of the following can be used:

x0 = U = matrix(0, nrow=3, ncol=1)

x0 = U = "zero"

The Λ matrix (termed V0 in MARSS) is a diagonal matrix with 5’s along
the diagonal:

V0 = diag(5,3)

Finally, we make a list of the model parameters to pass to the MARSS()

function and set the control list:

dfa.model = list(Z=Z, A="zero", R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

cntl.list = list(demean.states=TRUE, maxit=50)

For example purposes so that the code runs quicker, we set the maximum
iterations to 50. The parameter estimates will not have converged to the max-
imum likelihood values. That would take closer to 1000 iterations, but that
takes a long time so we set the maximum iterations lower so you can see
results quicker.

12.3.1 Fitting the model

We can now pass the DFA model list to MARSS() to estimate the Z matrix
and underlying hidden states (x). The output is not shown because it is volu-
minous.

kemz.3 = MARSS(dat.z, model=dfa.model, control=cntl.list)

126 12 Using MARSS to do dynamic factor analysis

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●●●
●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●
●
●

●

●
●●
●

●

●

●

●●

●
●

●●
●
●

●

●

●
●
●
●●●

●

●
●
●
●
●

●

●
●●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●
●

●

●
●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Cryptomonas

●●
●

●
●

●
●

●

●●

●
●●
●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●
●●

●

●
●●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Diatoms

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●
●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●●●

●●

●
●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●
●

●
●●●

●●

●

●
●

●●

●

●

●
●

●
●

●●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Greens

●

●
●

●
●

●
●
●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●
●
●●
●

●

●

●●

●●

●

●

●●
●
●●●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●
●
●●
●
●

●

●

●

●
●
●●●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●●
●●
●
●●

●

●
●
●●

●

●

●
●
●
●
●

●●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●

●

●
●
●
●
●●●

●

●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Bluegreens

●

●
●

●

●

●●

●

●
●●●●

●

●

●
●

●●

●
●●
●●●
●●●
●

●

●
●
●●●●

●
●

●
●●

●
●
●●●●

●
●●

●●●

●●

●
●●

●●●●

●●

●

●
●
●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●●●
●
●●●
●
●

●

●
●
●
●

●●

●

●

●
●

●
●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●
●
●●●

●

●

●

●●
●

●

●
●●●●●●

●●
●

●

●●

●

●

●●●●
●
●

●
●●

●

●●●●●
●●

●●
●

●

●

●

●●●
●
●●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Unicells

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●●

●

●
●●
●

●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●
●

●

●

●
●●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●

●
●

●●●●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●●
●

●

●
●

●

●

●●●

●●

●

●

●
●●

●●

●

●

●

●
−

4
−

2
0

1
2

3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Other.algae

Fig. 12.2. Plots of Lake Washington phytoplankton data with model fits (dark
lines) from a model with 3 trends and a diagonal and unequal variance-covariance
matrix for the observation errors.

12.4 Using model selection to determine the number of
trends

Following Zuur et al. (2003), we use model selection criteria (specifically AICc)
to determine the number of underlying trends that have the highest data
support. Our first model had three underlying trends (m = 3). Let’s compare
this to a model with two underlying trends. The forms for parameter matrix
R and vector a will stay the same but we need to change the other parameter
vectors and matrices because m is different.

After showing you the matrix math behind a DFA model, we will now
use the form argument for a MARSS call to specify that we want to fit a
DFA model. This will set up the Z matrix and the other parameters for you.
Specify how many trends you want by passing in model=list(m=x). You can
also pass in different forms for the R matrix in the usual way.

Bere is how to fit two trends using form="dfa":

12.4 Using model selection to determine the number of trends 127

model.list=list(m=2,R="diagonal and unequal")

kemz.2 = MARSS(dat.spp.1977, model=model.list,

z.score=TRUE, form="dfa", control=cntl.list)

Warning! log-log convergence only. Maxit (=50) reached before abstol convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: log-log convergence only no abstol convergence.

maxit reached at 50 iter before abstol convergence.

The likelihood and params might not be at the ML values.

Try setting control$maxit higher.

Log-likelihood: -1597.17

AIC: 3228.34 AICc: 3228.819

Estimate

Z.11 0.4800

Z.21 0.5359

Z.31 0.2727

Z.41 0.4308

Z.51 0.2382

Z.61 0.4791

Z.22 -0.3102

Z.32 0.2677

Z.42 0.8040

Z.52 -0.1065

Z.62 0.8127

R.R(1,1) 0.6655

R.R(2,2) 0.3350

R.R(3,3) 0.8475

R.R(4,4) 0.1280

R.R(5,5) 0.8806

R.R(6,6) 0.0778

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

and compare its AICc value to that from the 3-trend model.

print(c(kemz.3$AICc, kemz.2$AICc))

[1] 3135.878 3228.819

It looks like a model with 3 trends has a lot more support from the data
because its AICc value is about 90 units less than that for the 2-trend model.

128 12 Using MARSS to do dynamic factor analysis

12.4.1 Comparing many model structures

Now let’s examine a larger suite of possible models. We will test from one to
five underlying trends (m = 1 to 5) and three different structures for the R
matrix:

1. diagonal and equal,
2. diagonal and unequal, and
3. unconstrained.

The following code builds our model matrices; you could also write out each
matrix as we did in the first example, but this allows us to build and run all
of the models together.

set up forms of R matrices

levels.R = c("diagonal and equal",

"diagonal and unequal",

"unconstrained")

model.data = data.frame()

fit lots of models & store results

for(R in levels.R) {

for(m in 1:(N.ts-1)) {

dfa.model = list(A="zero", R=R, m=m)

kemz = MARSS(dat.spp.1977, model=dfa.model, control=cntl.list,

form="dfa", z.score=TRUE)

model.data = rbind(model.data,

data.frame(R=R,

m=m,

logLik=kemz$logLik,

K=kemz$num.params,

AICc=kemz$AICc,

stringsAsFactors=FALSE))

assign(paste("kemz", m, R, sep="."), kemz)

} # end m loop

} # end R loop

Model selection results are shown in Table 12.1. The model with lowest
AICc has 4 trends and an unconstrained R matrix. It also appears that, in
general, models with an unconstrained R matrix fit the data much better
than those models with less complex structures for the observation errors
(i.e., models with unconstrained forms for R had all of the AICc weight).

12.5 Using varimax rotation to determine the loadings and trends 129

Table 12.1. Model selection results.

R m logLik AICc delta.AICc Ak.wt Ak.wt.cum

unconstrained 3 -1471.5 3017 0.0 1.00 1.00
unconstrained 4 -1478.1 3037 19.6 0.00 1.00
unconstrained 5 -1481.9 3049 31.4 0.00 1.00
unconstrained 2 -1493.4 3052 35.3 0.00 1.00
diagonal and unequal 5 -1520.2 3094 76.5 0.00 1.00
diagonal and unequal 4 -1529.1 3107 90.0 0.00 1.00
diagonal and equal 5 -1544.9 3132 115.4 0.00 1.00
diagonal and unequal 3 -1546.6 3136 118.8 0.00 1.00
diagonal and equal 4 -1586.5 3212 194.5 0.00 1.00
diagonal and unequal 2 -1597.7 3230 212.8 0.00 1.00
diagonal and equal 3 -1607.5 3247 230.2 0.00 1.00
unconstrained 1 -1604.3 3264 246.7 0.00 1.00
diagonal and unequal 1 -1644.7 3314 296.5 0.00 1.00
diagonal and equal 2 -1688.5 3401 384.1 0.00 1.00
diagonal and equal 1 -1770.4 3555 537.9 0.00 1.00

12.5 Using varimax rotation to determine the loadings
and trends

As Harvey (1989, p. 450) discusses in section 8.5.1, there are multiple equiva-
lent solutions to the dynamic factor loadings. We arbitrarily constrained Z in
such a way to choose only one of these solutions, but fortunately the different
solutions are equivalent, and they can be related to each other by a rotation
matrix H. Let H be any m×m non-singular matrix. The following are then
equivalent solutions:

yt = Zxt + a + vt

xt = xt−1 + wt
(12.9)

and
yt = ZH−1Hxt + a + vt

Hxt = Hxt−1 + Hwt
(12.10)

There are many ways of doing factor rotations, but a common approach is
the varimax rotation which seeks a rotation matrix H that creates the largest
difference beween loadings. For example, let’s say there are three trends in our
model. In our estimated Z matrix, let’s say row 3 is (0.2,0.2,0.2). That would
mean that data series 3 is equally described by trends 1, 2, and 3. If instead row
3 was (0.8,0.1,0.1), this would make interpretation easier because we could
say that data time series 3 was mostly described by trend 1. The varimax
rotation finds the H matrix that makes the Z rows more like (0.8,0.1,0.1) and
less like (0.2,0.2,0.2).

130 12 Using MARSS to do dynamic factor analysis

The varimax rotation is easy to compute because R has a built in function
for this. To do so, we first get the model fits from the highest ranked model.

get the "best" model

best.model = model.tbl[1,]

fitname = paste("kemz",best.model$m,best.model$R,sep=".")

best.fit = get(fitname)

Next, we retrieve the matrix used for varimax rotation.

get the inverse of the rotation matrix

H.inv = varimax(parmat(best.fit)$Z)$rotmat

Finally, we use H−1 to rotate the factor loadings and H to rotate the trends
as in Equation 12.10.

rotate factor loadings

Z.rot = parmat(best.fit)$Z %*% H.inv

rotate trends

trends.rot = solve(H.inv) %*% best.fit$states

Rotated factor loadings for the best model are shown in Figure 12.3. Oddly,
some taxa appear to have no loadings on some trends (e.g., bluegreens on
trend 2). The reason is that, merely for display puroposes, we chose to plot
only those loadings that are greater than 0.05, and it turns out that after
varimax rotation, several loadings are close to 0. This is interesting given the
pronounced shape of trend 4 (Figure 12.4). If we compare the loadings on
trends 1-3 to those from a model with m = 3 (instead of m = 4), we would
see that they are quite similar. This suggests that we might choose the model
with m = 3 (2nd row in table) instead of m = 4.

Recall that we set Var(wt) = Q = Im in order to make our DFA model iden-
tifiable. Does the variance in the process errors also change following varimax
rotation? Interestingly, no. Because H is a non-singular, orthogonal matrix,
Var(Hwt) = HVar(wt)H> = HImH> = Im.

12.6 Examining model fits

Now that we have found a “best” model and done the appropriate factor and
trends rotations, we should examine some plots of model fits (see Figure 12.5).
First, it looks like the model did an adequate job of capturing some of the
high frequency variation (i.e., seasonality) in the time series. Second, some
of the time series had much better overall fits than others (e.g., compare
Diatoms versus Cryptomonas). Given the obvious seasonal patterns in the
phytoplankton data, it might be worthwhile to first “detrend” the data and
then repeat the model fitting exercise to see (1) how many trends would be
favored, and (2) the shape of those trends.

12.6 Examining model fits 131

−
0.

5
0.

0
0.

5

C
ry

pt
om

on
as

D
ia

to
m

s

U
ni

ce
lls

O
th

er
.a

lg
ae

Factor loadings on trend 1

−
0.

5
0.

0
0.

5

D
ia

to
m

s

G
re

en
s

U
ni

ce
lls

Factor loadings on trend 2

−
0.

5
0.

0
0.

5

D
ia

to
m

s

G
re

en
s

B
lu

eg
re

en
s

U
ni

ce
lls

O
th

er
.a

lg
ae

Factor loadings on trend 3

Fig. 12.3. Plot of the factor loadings (following varimax rotation) from the best
model fit to the phytoplankton data.

−
6

−
2

2
6

Trend 1

1977 1981 1985 1989 1993

−
6

−
2

2
6

Trend 2

1977 1981 1985 1989 1993

−
6

−
2

2
6

Trend 3

1977 1981 1985 1989 1993

Fig. 12.4. Plot of the unobserved trends (following varimax rotation) from the best
model fit to the phytoplankton data.

132 12 Using MARSS to do dynamic factor analysis

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●●●
●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●
●
●

●

●
●●
●

●

●

●

●●

●
●

●●
●
●

●

●

●
●
●
●●●

●

●
●
●
●
●

●

●
●●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●
●

●

●
●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Cryptomonas

●●
●

●
●

●
●

●

●●

●
●●
●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●
●●

●

●
●●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Diatoms

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●
●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●●●

●●

●
●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●
●

●
●●●

●●

●

●
●

●●

●

●

●
●

●
●

●●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Greens

●

●
●

●
●

●
●
●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●
●
●●
●

●

●

●●

●●

●

●

●●
●
●●●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●
●
●●
●
●

●

●

●

●
●
●●●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●●
●●
●
●●

●

●
●
●●

●

●

●
●
●
●
●

●●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●

●

●
●
●
●
●●●

●

●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Bluegreens

●

●
●

●

●

●●

●

●
●●●●

●

●

●
●

●●

●
●●
●●●
●●●
●

●

●
●
●●●●

●
●

●
●●

●
●
●●●●

●
●●

●●●

●●

●
●●

●●●●

●●

●

●
●
●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●●●
●
●●●
●
●

●

●
●
●
●

●●

●

●

●
●

●
●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●
●
●●●

●

●

●

●●
●

●

●
●●●●●●

●●
●

●

●●

●

●

●●●●
●
●

●
●●

●

●●●●●
●●

●●
●

●

●

●

●●●
●
●●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Unicells

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●●

●

●
●●
●

●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●
●

●

●

●
●●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●

●
●

●●●●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●●
●

●

●
●

●

●

●●●

●●

●

●

●
●●

●●

●

●

●

●
−

4
−

2
0

1
2

3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Other.algae

Fig. 12.5. Plot of the ”best” model fits to the phytoplankton data.

12.7 Adding covariates

It is standard to add covariates to the analysis so that one removes known
important drivers. The DFA with covariates is written:

xt = xt−1 + wt where wt ∼ MVN(0,Q)

yt = Zxt + a + Ddt + vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(12.11)

where the dt are the covariates at time t. This way of including covariates
means that the covariates are input, not data, and there can be no missing
values in the covariates.

Using form="dfa", we can easily add covariates to our DFA. The Lake
Washington dataset has two environmental covariates, temperature and total
phosphorous.

temp = t(lakeWAplankton[lakeWAplankton[,"Year"]>=1977,"Temp"])

TP = t(lakeWAplankton[lakeWAplankton[,"Year"]>=1977,"TP"])

We need the covariate inputs to have the same number of time steps as the
variate data, thus we limit the covariate data to years afer 1977 also.

12.8 Questions and further analyses 133

We

model.list=list(m=3,R="unconstrained")

kemz.temp = MARSS(dat.spp.1977, model=model.list,z.score=TRUE,form="dfa",

control=cntl.list, covariates=temp)

kemz.TP = MARSS(dat.spp.1977, model=model.list,z.score=TRUE,form="dfa",

control=cntl.list, covariates=TP)

kemz.both = MARSS(dat.spp.1977, model=model.list,z.score=TRUE,form="dfa",

control=cntl.list, covariates=rbind(temp,TP))

We can then compare whether the addition of the covariates improves the
model fit.

print(c(kemz.temp$AICc,kemz.TP$AICc,kemz.both$AICc))

[1] 2931.711 3089.863 3011.685

This suggests that using temperature as a covariate is warranted but total
phosphorous does not add information. However, keep in mind that these
results are using a low maximum number of iterations (maxit=20) and the
fits have not converged yet.

When you fit the models, the output looks a bit odd as you will see terms
like A.D1 listed. MARSS works by recasting different models into MARSS(1)
form, and in this case the D matrix appears in the a term of the equivalent
MARSS(1) model. You can ignore the A. part in the output and just focus
on the D part which gives the name of the DFA parameter. When you write
your own models, it is often useful to specify your own names for parameters.
For example, we could use

D=matrix(c("D(Crypto,Temp)","D(Diatoms,Temp)",

"D(Grn,Temp)","D(BG,Temp)","D(Uni,Temp)",

"D(Other,Temp)"), 6,1)

That way the model output will remind us exactly what each D term means,
e.g. the effect of temperature on Cryptomonas (z-scored) abundance.

12.8 Questions and further analyses

We analyzed the phytoplankton data alone. You can try analyzing the zoo-
plankton data (type head(lakeWAplankton)) to see the names. You can also
try analyzing the phytoplankton and zooplankton together. You can also try
different assumptions concerning the structure of R; we just tried uncon-
strained, diagonal and unequal, and diagonal and equal. To see all the R code
behind the figures, type RShowDoc("Case_study_4.R",package="MARSS").
This opens a file with all the code. Copy and paste the code into a new file, and
then you can edit that code. These models can take a long time to converge. In
a real DFA, you will want to make sure to try different inits values and force the
algorithm to run a long time by using control=list(minit=x, maxit=(x+c)),
where x and c are something like 200 and 800, respectively.

13

Case Study 5: Analyzing noisy animal tracking
data

13.1 A simple random walk model of animal movement

A simple random walk model of movement with drift (directional movement)
but no correlation is

x1,t = x1,t−1 + u1 + w1,t , w1,t ∼ N(0,σ2
1) (13.1)

x2,t = x2,t−1 + u2 + w2,t , w2,t ∼ N(0,σ2
2) (13.2)

where x1,t is the location at time t along one axis (here, longitude) and x2,t is
for another, generally orthogonal, axis (in here, latitude). The parameter u1 is
the rate of longitudinal movement and u2 is the rate of latitudinal movement.
We add errors to our observations of location:

y1,t = x1,t + v1,t , v1,t ∼ N(0,η2
1) (13.3)

y2,t = x2,t + v2,t , v2,t ∼ N(0,η2
2), (13.4)

This model is comprised of two separate univariate state-space models.
Note that y1 depends only on x1 and y2 depends only on x2. There are no
actual interactions between these two univariate models. However, we can
write the model down in the form of a multivariate model using diagonal
variance-covariance matrices and a diagonal design (Z) matrix. Because the
variance-covariance matrices and Z are diagonal, the x1:y1 and x2:y2 processes
will be independent as intended. Here are Equations 13.2 and 13.4 written as
a MARSS model (in matrix form):

[
x1,t
x2,t

]
=

[
x1,t−1
x2,t−1

]
+

[
u1
u2

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

(
0,
[

σ2
1 0

0 σ2
2

])
(13.5)

[
y1,t
y2,t

]
=

[
1 0
0 1

][
x1,t
x2,t

]
+

[
v1,t
v2,t

]
, vt ∼ MVN

(
0,
[

η2
1 0

0 η2
2

])
(13.6)

136 13 Analyzing animal tracking data

The variance-covariance matrix for wt is a diagonal matrix with unequal vari-
ances, σ2

1 and σ2
2. The variance-covariance matrix for vt is a diagonal matrix

with unequal variances, η2
1 and η2

2. We can write this succinctly as

xt = xt−1 + u + wt , wt ∼ MVN(0,Q) (13.7)

yt = xt + vt , vt ∼ MVN(0,R). (13.8)

13.2 Loggerhead sea turtle tracking data

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. In this case study, we use some turtle data from
the WhaleNet Archive of STOP Data, however we have corrupted this data
severely by adding random errors in order to create a “bad tag” problem. We
corrupted latitude and longitude data by errors (Figure 13.1) and it would ap-
pear that our sea turtles are becoming land turtles (at least part of the time).
For this case study, we will the MARSS model to estimate true positions and
speeds from the corrupted data.

13.2.1 Read in the data and load maps package

Our noisy data are in loggerheadNoisy. They consist of daily readings of
location (longitude/latitude). If data are missing for a day, then the entries
for latitude and longitude for that day should be NA. However, to make this
case study run quickly, we have interpolated all missing values in the original,
uncorrupted, dataset (loggerhead). The first six lines of the corrupted data
look like so

loggerheadNoisy[1:6,]

turtle month day year lon lat

1 BigMama 5 28 2001 -81.45989 31.70337

2 BigMama 5 29 2001 -80.88292 32.18865

3 BigMama 5 30 2001 -81.27393 31.67568

4 BigMama 5 31 2001 -81.59317 31.83092

5 BigMama 6 1 2001 -81.35969 32.12685

6 BigMama 6 2 2001 -81.15644 31.89568

The file has data for eight turtles:

turtles=levels(loggerheadNoisy$turtle)

turtles

13.3 Estimate locations from bad tag data 137

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"

[6] "MaryLee" "TBA" "Yoto"

We will analyze the position data for “Big Mama”. We put the data for “Big
Mama” into matrix dat. dat is transposed because we need time across the
columns.

turtlename="BigMama"

dat = loggerheadNoisy[which(loggerheadNoisy$turtle==turtlename),5:6]

dat = t(dat) #transpose

We will use the maps R package to plot the data and results. You will need
to install this R package in order to run the example code. Figure 13.1 shows
the corrupted location data for Big Mama.

13.3 Estimate locations from bad tag data

We will begin by specifying the structure of the MARSS model and then use
MARSS() to fit that model to the data. There are two state processes (one for
latitude and the other for longitude), and there is one observation time series
for each state process. As we saw in Equation 13.6, Z is the an identity matrix
(a diagonal matrix with 1s on the diagonal). We could specify this structure
as Z.model="identity" or Z.model=factor(c(1,2)). Although technically,
this is unnecessary as this is the default form for Z.

We will assume that the errors are independent and that there are different
drift rates (u), process variances (σ2) and observation variances for latitude
and longitude (η2).

Z.model="identity"

U.model="unequal"

Q.model="diagonal and unequal"

R.model="diagonal and unequal"

Fit the model to the data:

kem = MARSS(dat, model=list(Z = Z.model,

Q = Q.model, R = R.model, U = U.model))

13.3.1 Compare state estimates to the real positions

The real locations (from which loggerheadNoisy was produced by adding
noise) are in loggerhead. In Figure 13.2, we compare the tracks estimated
from the noisy data with the original, good, data. There are only a few data
points for the real data because in the real tag data, there are many missing
days.

138 13 Analyzing animal tracking data

#load the map package; you have to install it first

library(maps)

Read in our noisy data (no missing values)

pdat = loggerheadNoisy #for plotting

turtlename="BigMama"

par(mai = c(0,0,0,0),mfrow=c(1,1))

map('state', region = c('florida', 'georgia', 'south carolina', 'north carolina',

'virginia', 'delaware','new jersey','maryland'),xlim=c(-85,-70))

points(pdat$lon[which(pdat$turtle==turtlename)], pdat$lat[which(pdat$turtle==turtlename)],

col="blue",pch=21, cex=0.7)

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

Fig. 13.1. Plot of the tag data from the turtle Big Mama. Errors in the location
data make it seem that Big Mama has been moving overland.

13.3.2 Estimate speeds for each turtle

Turtle biologists designated one of these loggerheads“Big Mama,”presumably
for her size and speed. For each of the eight turtles, estimate the average miles
traveled per day. To calculate the distance traveled by a turtle each day, you
use the estimate (from MARSS()) of the lat/lon location of turtle at day t and
at day t − 1. To calculate distance traveled in miles from lat/lon start and
finish locations, we will use the function GCDF defined below:

13.3 Estimate locations from bad tag data 139

pred.lon = kem$states[1,]

pred.lat = kem$states[2,]

par(mai = c(0,0,0,0),mfrow=c(1,1))

library(maps)

pdat=loggerheadNoisy

turtlename="BigMama"

map('state', region = c('florida', 'georgia', 'south carolina', 'north carolina',

'virginia', 'delaware','new jersey','maryland'),xlim=c(-85,-70))

points(pdat$lon[which(pdat$turtle==turtlename)], pdat$lat[which(pdat$turtle==turtlename)],

col="blue",pch=21, cex=0.7)

lines(pred.lon, pred.lat,col="red", lwd=2)

goodturtles = loggerhead

gooddat = goodturtles[which(goodturtles$turtle==turtlename),5:6]

points(gooddat[,1], gooddat[,2],col="black", lwd=2, pch=3,cex=1.1)

legend("bottomright",c("bad locations", "estimated true location",

"good location data"),pch=c(1,-1,3),lty=c(-1,1,-1),

col=c("blue","red","black"), bty=FALSE)

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

● bad locations
estimated true location
good location data

Fig. 13.2. Plot of the estimated track of the turtle Big Mama versus the good
location data (before we corrupted it with noise).

140 13 Analyzing animal tracking data

GCDF <- function(lon1, lon2, lat1, lat2, degrees=TRUE, units="miles") {

temp = ifelse(degrees==FALSE,

acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon2-lon1)),

acos(sin(lat1/57.2958)*sin(lat2/57.2958)+cos(lat1/57.2958)*cos(lat2/57.2958)

*cos(lon2/57.2958-lon1/57.2958)))

r=3963.0 # (statute miles) , default

if("units"=="nm") r=3437.74677 # (nautical miles)

if("units"=="km") r=6378.7 # (kilometers)

return (r * temp)

}

We can now compute the distance traveled each day by passing in lat/lon
estimates from day i−1 and day i:

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

pred.lon and pred.lat are the predicted longitudes and latitudes from
MARSS(): rows one and two in kem$states. To calculate the distances for
all days, we put this through a for loop:

distance = array(NA, dim=c(dim(dat)[2]-1,1))

for(i in 2:dim(dat)[2])

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

The command mean(distance) gives us the average distance per day. We
can also make a histogram of the distances traveled per day (Figure 13.3).

We can compare the histogram of daily distances to what we would get if
we had not accounted for measurement error (Figure ??). We can also compare
the mean miles per day:

#accounting for observation error

mean(distance)

[1] 15.53858

#assuming the data have no observation error

mean(distance.noerr)

[1] 34.80579

13.4 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling
package that is customized for fitting MARSS models to tracking data. The
MARSS package does not have all the bells and whistles that you would
want for analyzing tracking data, particularly tracking data in the marine

13.4 Using specialized packages to analyze tag data 141

par(mfrow=c(1,1))

hist(distance) #make a histogram of distance traveled per day

Histogram of distance

distance

F
re

qu
en

cy

0 10 20 30 40 50

0
5

10
15

Fig. 13.3. Histogram of the miles traveled per day for Big Mama with estimates
that account for measurement error in the data.

environment. These are a couple R packages that we have come across for
this purpose:

UKFSST http://www.soest.hawaii.edu/tag-data/tracking/ukfsst/
KFTRACK http://www.soest.hawaii.edu/tag-data/tracking/kftrack/

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e. days with no location. MARSS() will struggle with
these data because it will estimate states for all the unseen days; kftrack only
fits to the seen days.

To use kftrack to fit the turtle data, type

library(kftrack) # must be installed from a local zip file

loggerhead = loggerhead

142 13 Analyzing animal tracking data

Compare to the distance traveled per day if you used the raw data

distance.noerr = array(NA, dim=c(dim(dat)[2]-1,1))

for(i in 2:dim(dat)[2])

distance.noerr[i-1]=GCDF(dat[1,i-1],dat[1,i],dat[2,i-1],dat[2,i])

hist(distance.noerr) #make a histogram of distance traveled per day

Histogram of distance.noerr

distance.noerr

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20

Fig. 13.4. Histogram of the miles traveled per day for Big Mama with estimates
that account for measurement error in the data.

Run kftrack with the first turtle (BigMama)

turtlename = "BigMama"

dat = loggerhead[which(loggerhead$turtle == turtlename),2:6]

model = kftrack(dat, fix.first=F, fix.last=F,

var.struct="uniform")

13.5 Questions and further analyses

1. Repeat the analysis done for “Big Mama” for each of the other turtles and
fill out the speed table (Table 13.1) with the mean daily distances travelled
assuming the data have measurement error versus assuming they do not.

13.5 Questions and further analyses 143

Table 13.1. Estimated speeds with location errors included in model versus speeds
(mean distance per day) when we assume that the data have no location error.

Location Data
error included assumed to be

Turtle in model error free

Big Mama

Bruiser

Humpty

Isabelle

Johanna

Mary Lee

TBA

Yoto

2. Compare turtle tracks to a proposed fishing area (say). You can add
areas to your maps in R by calling the following directly after making one of
the map plots:

lines(c(-77,-78,-78,-77,-77),

c(33.5,33.5,32.5,32.5,33.5),col="red",lwd=2)

lines(c(-75,-76,-76,-75,-75),

c(38,38,37,37,38),col="red",lwd=2)

14

Case Study 6: Detection of outliers and
structural breaks

14.1 River flow in the Nile River

This case study is based on a short example shown on page 147-148 in Koop-
man et al. (1999) using a 100-year record of river flow on the Nile River. The
methods are based on Harvey et al. (1998) which is in turn based on techniques
in Harvey and Koopman (1992) and Koopman (1993). The Nile dataset is in-
cluded in R . Figure 14.1 shows the data. To see all the R code behind the fig-
ures in this chapter, type RShowDoc("Case_study_6.R",package="MARSS").

14.2 Different models for the Nile flow levels

We begin by fitting different flow models to the data and compare these models
with AIC. After that, we will use the model residuals to look for outliers and
structural breaks.

14.2.1 Flat level model

We will start by modeling these data as a simple average river flow with
variability around this level.

yt = a + vt where vt ∼ N(0,r) (14.1)

where yt is the river flow volume at year t and x is some constant average flow
level (notice it has no t subscript).

To fit this model with MARSS, we will explicitly show all the MARSS
parameters.

xt = 1× xt−1 + 0 + wt where wt ∼ N(0,0)

yt = 0× xt + a + vt where vt ∼ N(0,r)

x0 = 0
(14.2)

146 14 Outliers and structural breaks

#load the datasets package

library(datasets)

data(Nile) #load the data

plot(Nile,ylab="Flow volume",xlab="Year")

Year

F
lo

w
 v

ol
um

e

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Fig. 14.1. The Nile River flow volume 1871 to 1970 (included dataset in R).

MARSS includes the state process xt but we are setting Z to zero so that does
not appear in our observation model. We need to fix all the state parameters
to zero so that the algorithm doesn’t “chase its tail” trying to fit xt to the
data.

An equivalent way to write this model is to use xt as the average flow level
and make it be a constant level by setting q = 0. The average flow appears as
the x0 parameter. In MARSS form, the model is:

xt = 1× xt−1 + 0 + wt where wt ∼ N(0,0)

yt = 1× xt + 0 + vt where vt ∼ N(0,r)

x0 = a
(14.3)

We will use this latter format since we will be building on this form. The
model is specified as a list as follows and we denote this model “0”:

14.2 Different models for the Nile flow levels 147

mod.nile.0 = list(

Z=matrix(1), A=matrix(0), R=matrix("r"),

B=matrix(1), U=matrix(0), Q=matrix(0),

x0=matrix("a"))

We then fit the model with MARSS():

#The data is in a ts format, and we need a matrix

dat = t(as.matrix(Nile))

#Now we fit the model

kem.0 = MARSS(dat, model=mod.nile.0)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -654.5157

AIC: 1313.031 AICc: 1313.155

Estimate

R.r 28352

x0.a 919

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

14.2.2 Linear trend in flow model

Figure 14.2 shows the fit for the flat average river flow model. Looking at the
data, we might expect that a declining average river flow would be better. In
MARSS form, that model would be:

xt = 1× xt−1 + u + wt where wt ∼ N(0,0)

yt = 1× xt + 0 + vt where vt ∼ N(0,r)

x0 = a
(14.4)

where u is now the average per-year decline in river flow volume. The model
is specified as a list as follows and we denote this model “1”:

mod.nile.1 = list(

Z=matrix(1), A=matrix(0), R=matrix("r"),

B=matrix(1), U=matrix("u"), Q=matrix(0),

x0=matrix("a"))

148 14 Outliers and structural breaks

We then fit the model with MARSS():

kem.1 = MARSS(dat, model=mod.nile.1)

Success! abstol and log-log tests passed at 18 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 18 iterations.

Log-likelihood: -642.3159

AIC: 1290.632 AICc: 1290.882

Estimate

R.r 22213.60

U.u -2.69

x0.a 1054.94

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Figure 14.2 shows the fits for the two models with deterministic models (flat
and declining) for mean river flow along with their AICc values (smaller AICc
is better). The AICc for the model with a declining river flow is lower by over
20 (which is a lot).

14.2.3 Stochastic level model

Looking at the flow levels, we might suspect that a model that allows the
average flow to change would model the data better and we might suspect that
there have been sudden, and anomalous, changes in the river flow level. We
will now model the average river flow at year t as a random walk, specifically
an autoregressive process which means that average river flow is year t is a
function of average river flow in year t−1.

xt = xt−1 + wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = π
(14.5)

As before, yt is the river flow volume at year t. With all the MARSS parameters
shown, the model is:

xt = 1× xt−1 + 0 + wt where wt ∼ N(0,q)

yt = 1× xt + 0 + vt where vt ∼ N(0,r)

x0 = π
(14.6)

14.2 Different models for the Nile flow levels 149

Thus, Z = 1, a = 0, R = r, B = 1, u = 0, Q = q, and x0 = π. The model is then
specified as:

mod.nile.2 = list(

Z=matrix(1), A=matrix(0), R=matrix("r"),

B=matrix(1), U=matrix(0), Q=matrix("q"),

x0=matrix("pi"))

We could also use the text shortcuts to specify the model. Because R and
Q are 1×1 matrices, “unconstrained”, “diagonal and unequal“, “diagonal and
equal” and “equalvarcov” will all lead to a 1× 1 matrix with one estimated
element. For a and u, the following shortcut could be used:

A=U="zero"

Because x0 is 1× 1, it could be specified as “unequal”, “equal” or “uncon-
strained”.

We fit the model with the MARSS() function. We are using the “BFGS”
algorithm to polish off the estimates, since it will get the maximum faster
than the default EM algorithm as long as we start it close to the maximum.

kem.2em = MARSS(dat, model=mod.nile.2, silent=TRUE)

kem.2 = MARSS(dat, model=mod.nile.2,

inits=kem.2em$par, method="BFGS")

Success! Converged in 12 iterations.

Function MARSSkf used for likelihood calculation.

MARSS fit is

Estimation method: BFGS

Estimation converged in 12 iterations.

Log-likelihood: -637.7451

AIC: 1281.49 AICc: 1281.74

Estimate

R.r 15337

Q.q 1218

x0.pi 1112

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

This is the same model fit in Koopman et al. (1999, p. 148) except that we
estimate x1 as parameter rather than specifying x1 via a diffuse prior. As
a result, the log-likelihood value and R and Q are a little different than in
Koopman et al. (1999).

150 14 Outliers and structural breaks

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970
60

0
10

00
14

00

model 0, AICc= 1313

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

60
0

10
00

14
00

model 1, AICc= 1291

F
lo

w
 v

ol
um

e

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

60
0

10
00

14
00

model 2, AICc= 1282

Fig. 14.2. The Nile River flow volume with the model estimated flow rates (solid
lines). The bottom model is a stochastic level model, and the 2 standard deviations
for the level are also shown. The other two models are deterministic level models so
the state is not stochastic and does not have a standard deviation.

14.3 Observation and state residuals

Figure 14.2 shows the MARSS fits to the data. From these model fits, auxil-
iary residuals can be computed which contain information about whether the
data and models fits at time t differ more than you would expect given the
model and the model fits at time t−1. In this section, we follow the example
shown on page 147-148 in Koopman et al. (1999) and use these residuals to
look for outliers and sudden flow level changes. Using auxiliary residuals this
way follows mainly from Harvey and Koopman (1992), but see slso Koopman
(1993, sec. 3), de Jong and Penzer (1998) and Penzer (2001) for discussions
of using auxiliary residuals for detection of outliers and structural breaks.

14.3 Observation and state residuals 151

The MARSS function will output the expected values of xt conditioned on
the maximum-likelihood values of q, r, and x1 and on the data (y). In time
series literature, these are called the smoothed state estimates and they are
output by the Kalman filter-smoother. We will call these smoothed estimates
x̂t and from them, we can compute the model predicted value of yt or ŷt :

x̂t = E(xt |θ̂,yT
1)

ŷt = E(yt |θ̂,yT
1)

= E(xt |θ̂,yT
1)+ E(wt |θ̂,yT

1) = x̂t

(14.7)

where θ̂ are the maximum-likelihood estimates of the parameters. The ŷt equa-
tion comes directly from equation (14.5).

14.3.1 Using observation residuals to detect outliers

The standardized smoothed observation residuals1 are the difference between
the data at time t and the model fit at time t conditioned on all the data
standardized by the observation variance:

v̂t = yt − ŷt

et =
1√

var(v̂t)
v̂t

(14.8)

These residuals should have (asymptotically) a t-distribution (Kohn and Ans-
ley, 1989, sec. 3) and by looking at the residuals, we can identify potential out-
lier data points–or more accurately, we can identify data points that do not fit
the model (Equation 14.5). The function MARSSresids() will compute these
residuals. It returns the standardized residuals (also called auxiliary residu-
als) as a n + m×T matrix. The first n rows are the estimated vt standardized
observation residuals and the next m rows are the estimated wt standardized
state residuals (discussed below).

resids.0=MARSSresids(kem.0)$std.et

resids.1=MARSSresids(kem.1)$std.et

resids.2=MARSSresids(kem.2)$std.et

Figure 14.3 shows the observation residuals for the three models devel-
oped above. We immediately see that model 0 (flat level) and model 1 (linear
declining level) have problems because the residuals are all positive for the
first part of the time series and then all negative. The residuals should not be

1 also called smoothations in the literature to distinguish them from innovations,
which are yt − E(yt |yt−1

1). Notice that for innovations the expectation is condi-
tioned on the data up to time t− 1 while for smoothations, we condition on all
the data.

152 14 Outliers and structural breaks

temporally correlated like that. Model 2 with a stochastic level shows well-
behaving residuals with low temporal correlation between t and t−1. Looking
at the residuals for model 2, we see that there are a number of years with flow
levels that appear to be outliers (are beyond the dashed level lines).

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

−
4

−
2

0
2

4

st
d.

 r
es

id
ua

ls
model 0−−flat level

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

−
4

−
2

0
2

4

st
d.

 r
es

id
ua

ls

model 1−−linearly declining level

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

−
4

−
2

0
2

4

st
d.

 r
es

id
ua

ls

model 2−−stochastic level

Fig. 14.3. The standardized observation residuals from models 0, 1, and 2. These
residuals are the standardized v̂t . The dashed lines are the 95% CIs for a t-
distribution.

14.3.2 Detecting sudden level changes

The standardized smoothed state residuals (ft below) are the difference be-
tween the estimated state at time t and the estimated state at time t − 1
conditioned on all the data standardized by the standard deviation:

ŵt = x̂t − x̂t−1

ft =
1√

var(ŵt)
ŵt

(14.9)

These state residuals do not show simple changes in the average level; xt is
clearly changing in Figure 14.2, bottom panel. Instead we are looking for

14.3 Observation and state residuals 153

“breaks” or sudden changes in the level. The bottom panel of Figure 14.4
shows the standardized state residuals (ft). This shows, as we can see by eye,
the average flow level in the Nile appears to have suddenly changed around
the turn of the century when the first Aswan dam was built. The top panel
shows the standardized observaton residuals for comparison.

1870 1890 1910 1930 1950 1970

−
4

−
2

0
2

4
test for outliers

1870 1890 1910 1930 1950 1970

−
4

−
2

0
2

4

test for level changes

st
an

da
rd

iz
ed

 r
es

id
ua

ls

Fig. 14.4. Top panel, the standardized observation residuals. Bottom panel, the
standardized state residuals. This replicates Figure 12 in Koopman et al. (1999).

15

Case Study 7: Estimation of species interaction
strengths with and without covariates

15.1 Background

Multivariate autoregressive models (commonly termed MAR models) have
been developed as a tool for analyzing community dynamics from time series
data (Ives, 1995; Ives et al., 1999, 2003). This approach has been used estimate
species interaction strengths, stability metrics, and environmental drivers for
a variety of freshwater plankton systems (Ives, 1995; Ives et al., 1999, 2003;
Hampton et al., 2008, 2006; Hampton and Schindler, 2006; Klug and Cotting-
ham, 2001). These models are based on a process model for log abundances
(x) of the form

xt = Bxt−1 + u + wt where wt ∼ MVN(0,Q) (15.1)

B is the interaction matrix; self interaction strengths (density-dependence)
are on the diagonal and inter-specific interaction strengths are on the off-
diagonals such that Bi, j is the ‘effect’ of species j on species i. This model has
a stochastic equilibrium—it fluctuates around mean, (I−B)−1u. The term u
determines the mean level but once the system is at equalibrium, it does not
affect the fluctuations relative to the mean. To see this, compare two models
with b = 0.5 and u = 1 versus u = 0. The mean for the first is 1/(1−0.5) = 2 and
for the second is 0. If we start both 1 above the mean, the next x is the same
distance from the mean: x2 = 0.5(2+1)+1 = 2.5 and x2 = 0.5(0+1)+0 = 0.5.
So both end up at 0.5 above the mean. So once the system is at equalibrium,
it is ‘scale invariant’, where u is the scaling term. The way that Ives et al.
(2003) write their process model (their Equation 10) is Xt = A + BXt−1 + Et .
The A in Ives’s equation is the u appearing in Equation 15.1 and the Et is our
wt .

Often the models include environmental covariates, but we will leave that
off for the moment and address that at the end of this case study. If we add

156 15 B estimation

a measurement process1, we have a MARSS model:

yt = Zxt + a + vt where vt ∼ MVN(0,R) (15.2)

Typically, we have one time series per species and thus we assume that m = n
and Z is an m×m identity matrix (when m = n, a is set to 0). However, it is
certainly possible to have multiple time series per species (for example data
taken at multiple sites).

In this case study, we will estimate the B matrix of species interactions for
a simple wolf-moose system and for a four-species freshwater plankton system.

15.2 Two-species example using wolves and moose

Population dynamics of wolves and moose on Isle Royale make an interesting
case study of a two-species predator-prey interactions. These populations have
been studied intensively since 1958, making the time-series length relatively
unique. Unlike other populations of grey wolves, the Isle Royale population
has a diet dominated by one prey item (ca. 90% moose). The only predator
of moose on Isle Royale is the grey wolf, as this population is not hunted.

We will use the wolf and moose census data from Isle Royale to learn how
to fit community dynamics models to time-series data. The data we are using
are the raw aerial survey data, rather than the reconstructed numbers that
one normally sees presented for the Isle Royale moose. This is to remove the
smoothing that the reconstruction introduces.

15.2.1 Load in and plot the data

royale.dat = log(t(isleRoyal[,2:3]))

15.2.2 Fit the model to the wolf-moose data

The naive way to fit the model is to use Equations 15.2 and 15.1 “as is”:

royale.model.0=list(B="unconstrained",Q="diagonal and unequal",

R="diagonal and unequal",U="unequal")

kem.0=MARSS(royale.dat,model=royale.model.0)

If you try this, you will notice that it does not converge but stops when it
reaches maxit and prints a number of warnings about non-convergence. The
problem is that when you try to estimate B and u, they are often confounded.
This a well-known problem, and you will need to find a way to fix u at some

1 You can fit a MAR model with no observation error by setting R = 0, but a
conditional least-squares algorithm is vastly faster than EM or BFGS for the
R = 0 case (assuming no missing data).

15.2 Two-species example using wolves and moose 157

matplot(isleRoyal[,1],log(isleRoyal[,2:3]),

ylab="log count",xlab="Year",type="l",

lwd=3,bty="L",col="black")

legend("topright",c("Wolf","Moose"), lty=c(1,2), bty="n")

1960 1970 1980 1990 2000

3
4

5
6

7
8

Year

lo
g

co
un

t

Wolf
Moose

Fig. 15.1. Plot of the Isle Royale wolf and moose data.

value. If you are willing to assume that the process is at equilibrium (i.e.
not recovering to equilibrium from a big perturbation), then you can simply
demean the data and set u to 0. It is also common to standardize the variance
by dividing by the square root of the variance of the data. This is called
z-scoring the data.

#if missing values are in the data, they should be NAs

z.royale.dat=(royale.dat-apply(royale.dat,1,mean,na.rm=TRUE))/

sqrt(apply(royale.dat,1,var,na.rm=TRUE))

We also need to change a couple settings before fitting the model. In the
default MARSS model, the initial value of x is treated as being at t = 0. If we
are estimating the B matrix, we need to set this to be at t = 1 so that the initial

158 15 B estimation

x is constrained by the data2 at t = 1. The reason is that we need to estimate
the initial x. Even if we use a prior on the initial x, we are still estimating
its value3. A model with a non-diagonal B matrix, does not “run backwards”
well and the estimation of the initial x will run in circles. If we constrain it by
data (at t = 1), we avoid this problem. So we will set model$tinitx=1.

The other setting we want to change is allow.degen. This sets the diago-
nals of Q or R to zero if they are heading towards zero. When the initial x is
at t = 1, this can have non-intuitive (not wrong but puzzling; see Appendix B)
consequences if R is going to zero. So, we will set control$allow.degen=FALSE
and manually set R to 0 if needed.

royale.model.1=list(Z="identity", B="unconstrained",

Q="diagonal and unequal", R="diagonal and unequal",

U="zero", tinitx=1)

cntl.list=list(allow.degen=FALSE,maxit=200)

kem.1=MARSS(z.royale.dat, model=royale.model.1, control=cntl.list)

Warning! Reached maxit before parameters converged. Maxit was 200.

neither abstol nor log-log convergence tests were passed.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

WARNING: maxit reached at 200 iter before convergence.

Neither abstol nor log-log convergence test were passed.

The likelihood and params are not at the ML values.

Try setting control$maxit higher.

Log-likelihood: -83.28397

AIC: 186.5679 AICc: 189.0398

Estimate

R.R(1,1) 0.00172

R.R(2,2) 0.00036

B.B(1,1) 0.69461

B.B(2,1) -0.27502

B.B(1,2) -0.06822

B.B(2,2) 0.63271

Q.Q(1,1) 0.45211

Q.Q(2,2) 0.27980

2 If there are many missing values at t = 1, we might still have problems and have
to adjust accordingly.

3 Also putting a prior on the initial x’s requires specifying their variance-covariance
structure, which depends on the unknown B, and specifying some variance-
covariance structure that conflicts with B will change your B estimates. So, in
general, using a prior on the initial x’s when estimating B is a bad idea.

15.2 Two-species example using wolves and moose 159

x0.x0,1 -0.28324

x0.x0,2 -1.26168

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings

Warning: the R.R(1,1) parameter value has not converged.

Warning: the R.R(2,2) parameter value has not converged.

Warning: the logLik parameter value has not converged.

It looks like R is going to zero, meaning that the maximum-likelihood model
is a process error only model. That is not too surprising given that the data
look more like a random walk than white noise. We will set R manually to
zero:

royale.model.2=list(Z="identity", B="unconstrained",

Q="diagonal and unequal", R="zero", U="zero")

kem.2=MARSS(z.royale.dat, model=royale.model.2, control=cntl.list)

Success! abstol and log-log tests passed at 16 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 16 iterations.

Log-likelihood: -89.38523

AIC: 194.7705 AICc: 196.3529

Estimate

B.B(1,1) 0.6933

B.B(2,1) -0.2741

B.B(1,2) -0.0686

B.B(2,2) 0.6331

Q.Q(1,1) 0.4455

Q.Q(2,2) 0.2748

x0.x0,1 -0.6340

x0.x0,2 -2.2670

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

15.2.3 Look at the estimated interactions

The estimated B matrix is kem.2parB.

160 15 B estimation

wolf.B=parmat(kem.2)$B

rownames(wolf.B)=colnames(wolf.B)=rownames(royale.dat)

print(wolf.B, digits=2)

Wolf Moose

Wolf 0.69 -0.069

Moose -0.27 0.633

Does the B matrix make sense ecologically? Element row=i, col= j in B is
the effect of species j on species i, so B2,1 is the effect of wolves on moose
and B1,2 is the effect of moose on wolves. The diagonals are interpreted dif-
ferently than the off-diagonals since the diagonals are (bi,i−1) so subtract off
1 from the diagonals to get the effect of species i on itself. If the species are
density-independent, then Bi,i would equal 1. Smaller Bi,i means more density
dependence.

The B matrix suggests that wolves have a negative effect on moose (as you
might expect), but that moose also have a slightly negative effect on wolves.
The negative effect of moose on wolf is not what we would expect. We have
modeled the effect of moose numbers last year on wolf numbers this year. It
may be that the effects are delayed or that it is moose numbers in winter
(say) that are most important to wolf population increase. Or perhaps the
negative effect (actually correlation) between moose numbers last year and
wolf numbers this year is not surprising if actual numbers are less important
than the condition of the moose. Low moose numbers may be correlated with
‘weak moose’ which provides an abundant wolf food supply

This analysis was for teaching purposes and one should not make too much
of the B estimates because we have not included any environmental covariates.
It is well-known that other factors have large effects on moose numbers. Moose
numbers are strongly affected by winter temperatures and snow depth. If we
had data on winter temperature and snow depth, we might find that the effect
of wolves on moose is considerably different than that estimated with just wolf
and moose data.

15.2.4 Change the model and data

You can explore the sensitivity of the B estimates when the measurement error
is increased by adding white noise to the data:

bad.data=z.royale.dat+matrix(rnorm(100,0,sqrt(.2)),2,50)

kem.bad=MARSS(bad.data, model=model, control=cntl.list)

You can change the model by changing the constraints on R and Q.

15.3 Analysis a four-species plankton community

Ives et al. (2003) presented weekly data on the biomass of two species of
phytoplankton and two species of zooplankton in two lakes, one with low

15.3 Analysis a four-species plankton community 161

planktivory and one with high planktivory. They used these data to estimate
the interaction terms for the four species. Here we will reanalyze data and
compare our results.

Ives et al. (2003) explain the data as: “The data consist of weekly samples
of zooplankton and phytoplankton, which for the analyses were divided into
two zooplankton groups (Daphnia and non-Daphnia) and two phytoplankton
groups (large and small phytoplankton). Daphnia are large, effective herbi-
vores, and small phytoplankton are particularly vulnerable to herbivory, so
we anticipate strong interactions between Daphnia and small phytoplankton
groups.” Figure 15.2 shows the data. What you can see from the figure is that
the data are only collected in the summer.

15.3.1 Load in the plankton data

only use the plankton, daphnia, & non-daphnia

plank.spp = c("Large Phyto","Small Phyto","Daphnia","Non-daphnia")

plank.dat = ivesDataByWeek[,plank.spp]

#The data are not logged

plank.dat = log(plank.dat)

#Transpose to get time going across the columns

plank.dat = t(plank.dat)

#make a demeaned version

d.plank.dat = (plank.dat-apply(plank.dat,1,mean,na.rm=TRUE))

As before, we will demean the data so we can set u to 0. We do not standardize
by the variance, however because we are going to fix the R variance later as
Ives et al. did.

15.3.2 Specify a MARSS model for the plankton data

We will start by fitting a model with the following assumptions:

� All phytoplankton share the same process variance.
� All zooplankton share the same process variance.
� Phytoplankton and zooplankton have different measurement variances
� Measurement errors are independent.
� Process errors are independent.

Z="identity"

U="zero"

B="unconstrained"

Q=matrix(list(0),4,4); diag(Q)=c("Phyto","Phyto","Zoo","Zoo")

R=matrix(list(0),4,4); diag(R)=c("Phyto","Phyto","Zoo","Zoo")

plank.model.0=list(Z=Z, U=U, Q=Q, R=R, B=B)

162 15 B estimation

−
4

−
2

0
2

week of study

lo
g

bi
om

as
s

1 15 31 47 63 79 95 113 133 153 173 193 213 233 253 273 293

Fig. 15.2. Plot of the de-meaned plankton data. Zooplankton are the thicker lines.
Phytoplankton are the thinner lines.

Why did we set U="zero"? Equation 15.1 is a stationary model; it fluctuates
about a mean. The u in Equation 15.1 is a scaling term that just affects the
mean level—once the system is at equilibrium. If we assume that the mean of
y (the mean of our data) is a good estimate of the mean of the system (the
x), then we can set u equal to zero.

15.3.3 Fit the plankton model and look at the estimated B matrix

The call to fit the model is standard with the addition of setting model$tinitx

so that the initial states (x) are set at t = 1 instead of t = 0.

plank.model.0$tinitx=1

kem.plank.0 = MARSS(d.plank.dat, model=plank.model.0)

Now we can print the B matrix, with a little cleaning up so it looks prettier.

#Cleaning up the B matrix for printing

B.0 = parmat(kem.plank.0)$B[1:4,1:4]

rownames(B.0) = colnames(B.0) = c("LP","SP","D","ND")

print(B.0,digits=2)

LP SP D ND

LP 0.77 0.29 -0.0182 0.131

SP 0.19 0.51 0.0052 -0.045

D -0.43 2.29 0.4916 0.389

ND -0.33 1.35 -0.2180 0.831

LP stands for large phytoplankton, SP for small phytoplankton, D for Daphnia
and ND for non-Daphnia.

15.3 Analysis a four-species plankton community 163

We can compare this to the Ives et al. estimates (in their Table 2, bottom
right) and see a few differences:

LP SP D ND

LP 0.48 -0.39 -- --

SP -- 0.25 -0.17 -0.11

D -- -- 0.74 0.00

ND -- 0.10 0.00 0.60

First, thing you will notice is that the Ives et al. matrix is missing values. The
matrix they show is after a model selection step to determine which interac-
tions had little data support and thus could be set to zero. Also, they fixed
apriori the interactions between Daphnia and non-Daphnia at zero because
they do not prey on each other. The second thing you will notice is that the
estimates are not particularly similar. Next we will try some other ways of
fitting the data that are closer to the way that Ives et al. fitted the data.

By the way, if you are curious what would happen if we removed all those
NAs, you can run the following code.

test.dat=d.plank.dat[,!is.na(d.plank.dat[1,])]

test = MARSS(test.dat, model=plank.model.0)

Removing all the NAs would mean that the end of summer 1 is connected to
the beginning of summer 2. This adds some steep steps in the Daphnia time
series where Daphnia ended the summer high and started the next summer
low.

15.3.4 Look at different ways to fit the model

We will try a series of changes to get closer to the way Ives et al. fit the data,
and you will see how different assumptions change (or do not change) our
species interaction estimates.

First, we change Q to be unconstrained. Making Q diagonal in model 0
meant that we were assuming that whatever environmental factor is driving
variation in phytoplankton numbers is uncorrelated with the environmental
factor driving zooplankton variation. That is probably not true since they are
all in the same lake. This case takes awhile to run.

plank.model.1=plank.model.0

plank.model.1$Q="unconstrained"

kem.plank.1 = MARSS(d.plank.dat, model=plank.model.1)

Notice that the Q specification changed to “unconstrained”. Everything else
stays the same as in model 0. The code now runs longer, and the B estimates
are not particulaly closer to Ives et al.

LP SP D ND

LP 0.4961 0.061 0.079 0.123

164 15 B estimation

SP -0.1833 0.896 0.067 0.011

D 0.1180 0.350 0.638 0.370

ND 0.0023 0.370 -0.122 0.810

Next, we will set some of the interactions to zero as in Table 2 in Ives et
al. (2003). In that table, certain interactions were fixed at 0 (denoted with
0s), and some were made 0 after fitting (the blanks). We will fix all to zero.
To do this, we need to write out the B matrix as a list matrix so that we can
have estimated and fixed values (the 0s) in the B specification.

B.2=matrix(list(0),4,4) #set up the list matrix

diag(B.2)=c("B11","B22","B33","B44") #give names to diagonals

#and names to the estimated non-diagonals

B.2[1,2]="B12"; B.2[2,3]="B23"; B.2[2,4]="B24"; B.2[4,2]="B42"

print(B.2)

[,1] [,2] [,3] [,4]

[1,] "B11" "B12" 0 0

[2,] 0 "B22" "B23" "B24"

[3,] 0 0 "B33" 0

[4,] 0 "B42" 0 "B44"

As you can see, the B matrix now has elements that will be estimated
(the names in quotes) and fixed values (the numbers with no quotes). When
preparing your list matrix, make sure your fixed values do not have have quotes
around them. If they do, they are strings (class character) not numbers (class
numeric), and MARSS will interpret a string as the name of something to be
estimated. If you use the same name for an element, then MARSS will force
those elements to be shared (have the same value). This one will take a while
to run also.

#model 2

plank.model.2=plank.model.1

plank.model.2$B = B.2

kem.plank.2= MARSS(d.plank.dat, model=plank.model.2)

Now we are getting closer to the Ives et al. estimates:

LP SP D ND

LP 0.65 -0.33 -- --

SP -- 0.54 0.0016 -0.026

D -- -- 0.8349 --

ND -- 0.13 -- 0.596

Ives et al. did not estimate R. Instead they used a fixed observation vari-
ance of 0.04 for phytoplankton and 0.16 for zooplankton4. We fit the model
with their fixed R as follows:

4 You can compare this to the estimated observation variances by looking at
kem.plank.2parR

15.3 Analysis a four-species plankton community 165

#model 3

plank.model.3=plank.model.2

plank.model.3$R=diag(c(.04,.04,.16,.16))

kem.plank.3= MARSS(d.plank.dat, model=plank.model.3)

As you can see from Table 15.1, we are getting closer to Ives et al. estimates,
but we are still a bit off. Now we need to add the environmental covariates:
phosphorous and fish biomass.

15.3.5 Adding covariates

A standard way that you will see covariate data added to a MARSS model is
the following:

xt = Bxt−1 + u + Cct + wt , where wt ∼ MVN(0,Q)

yt = Zxt + a + Ddt + vt , where vt ∼ MVN(0,R)
(15.3)

ct and dt are covariate data, like temperature. At time t and C is a matrix
with the (linear) effects of ct on xt , and D is a matrix with the (linear) effects
of dt on yt .

Ives et al. (2003) only include covariates in their process model, and their
process model (their Equation 27) is written Xt = A + BXt−1 + CUt + Et . In
our Equation 15.3, Ut = ct , and C is a m× p matrix, where p is the number
of covariates in ct . For this case study, we set their A (our u) to zero by
demeaning the y and implicitly assuming that the mean of the y is a good
estimate of the mean of the x’s. Thus the model where covariates only affect
the underlying process is

xt = Bxt−1 + Cct + wt , where wt ∼ MVN(0,Q)

yt = xt + vt , where vt ∼ MVN(0,R)
(15.4)

To fit this model, we first need to prepare the covariate data. We will just
use the phosphorous data.

#transpose to make time go across columns

#drop=FALSE so that R doesn't change our matrix to a vector

phos = t(log(ivesDataByWeek[,"Phosph",drop=FALSE]))

d.phos = (phos-apply(phos,1,mean,na.rm=TRUE))

Why log the covariate data? It is what Ives et al. did, so we follow their
method. However, in general, you want to think about what relationshipyou
want to assume between the covariates and their effects. For example, log (or
square-root) transformations mean that extremes have less impact relative to
their untransformed value and that a small absolute change, say from 0.01
to 0.0001 in the untransformed value, can mean large difference in the effects
since log(0.0001) < log(0.01).

166 15 B estimation

Phosporous is assumed to only affect phytoplankton so the other terms in
C, corresponding to the zooplankton, are set to 0. The C matrix is defined as
follows:

C =




CLP,phos
CSP,phos

0
0


 (15.5)

To add C and c to our latest model, we add C and c to the model list used
in the MARSS call:

plank.model.4=plank.model.3

plank.model.4$C=matrix(list("C11","C21",0,0),4,1)

plank.model.4$c=d.phos

Then we fit the model as usual:

kem.plank.4= MARSS(d.plank.dat, model=plank.model.4)

Success! abstol and log-log tests passed at 55 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 55 iterations.

Log-likelihood: -393.189

AIC: 834.3781 AICc: 837.9284

Estimate

B.B11 0.6138

B.B12 -0.4619

B.B22 0.3320

B.B42 0.0479

B.B23 -0.0182

B.B33 0.8889

B.B24 -0.0476

B.B44 0.6643

U.C11 0.1385

U.C21 0.1580

Q.Q(1,1) 0.7376

Q.Q(2,1) 0.2159

Q.Q(3,1) 0.0796

Q.Q(4,1) 0.0293

Q.Q(2,2) 0.2688

Q.Q(3,2) -0.1271

Q.Q(4,2) -0.0878

15.3 Analysis a four-species plankton community 167

Q.Q(3,3) 0.8654

Q.Q(4,3) 0.4685

Q.Q(4,4) 0.3906

x0.x0,1 0.1615

x0.x0,2 -0.5273

x0.x0,3 -1.1121

x0.x0,4 -1.8082

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

15.3.6 Including a covariate observation model

The difficulty with the standard approach to including covariates (Equation
15.3) is that it limits what kind of covariate data you can use and how you
model that covariate data. You have to assume that your covariate data has no
error, which is probably not true. Assuming that your covariate has no error
reduces the reported uncertainty in your covariate effect because you did not
include uncertainty in those values. The standard approach also does not allow
missing values in your covariate data, which is why we did not include the fish
covariate data in the last model. Also you cannot combine instrument time
series; for example, if you have two temperature recorders with different error
rates and biases. Also, what if you have one noisy temperature recorder in the
first part of your time series and then you switch to a much better recorder
in the second half of your time series? All these problems require pre-analysis
massaging of the covariate data, leaving out noisy and gappy covariate data,
and making what can feel like arbitrary choices about which covariate time
series to include which is especially worrisome when the covariates are then
incorporated in the model as known without error.

Instead one can include an observation and process model for the covariates
just like for the non-covariate data. Now the covariates are included in yt
and are modeled with their own state process(es) in xt . A MARSS model
with a covariate observation and process model is shown below. The elements
with superscript (v) are for the variates and those with superscript (c) are
for the covariates. The superscripts just help us keep straight which of the
state processes and parameters corresponding to the parts that correspond
abundances and which correspond to the environmental covariates.

[
x(v)

x(c)

]

t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]

t−1
+

[
u(v)

u(c)

]
+ wt , wt ∼ MVN

(
0,
[

Q(v) 0
0 Q(c)

])

[
y(v)

y(c)

]

t
=

[
Z(v) 0

0 Z(c)

][
x(v)

x(c)

]

t
+

[
a(v)

a(c)

]
+ vt , vt ∼ MVN

(
0,
[

R(v) 0
0 R(c)

])

(15.6)

168 15 B estimation

Note that when you fit your covariate and non-covariate data jointly as in
Equation 15.6, your non-covariate data affect the estimates of the covariate
models. When you maximize the likelihood, you do so conditioned on all the
data. The likelihood that is output is the likelihood of the non-covariate and
covariate data. Depending on your system, you might not want the covariate
model affected by the non-covariate data. In this case, you can fit the covariate
model separately:

x(c)
t = B(c)x(c)

t−1 + u(c) + wt , wt ∼ MVN(0,Q(c))

y(c)
t = Z(c)x(c)

t + a(c), vt ∼ MVN(0,R(c))
(15.7)

At this point, you have another choice. Do you want the estimated covari-
ates states, the x(c), to be affected by the non-covariate data? For example, you
have temperature data. You can estimates true temperature for the temper-
ture only from the temperature data or you can decide that the non-covariate
data has information about the true temperature, because the non-covariate
states are affected by the true temperature. If you want the covariate states to
only be affected by the covariate data, then use Equation 15.3 with ut set from
your estimates of x(c) from Equation 15.7. Or if you want the non-covariate
data to affect the estimates of the covariate states, use Equation 15.6 with the
parameters estimated from Equation 15.7.

15.3.7 The MARSS model with covariates following Ives et al.

Ives et al. used Equation 15.3 for phosporous and Equation 15.6 for fish
biomass. Phosporous was treated as observed with no error since it was ex-
perimentally manipulated and there were no missing values. Fish biomass
was treated as having observation error and was modeled as a autoregressive
process with unknown parameters as in Equation 15.6.

Their MARSS model takes the form:

xt = Bxt−1 + Cct + wt , where wt ∼ MVN(0,Q)

yt = xt + vt , where vt ∼ MVN(0,R)
(15.8)

where x and y are redefined as




large phyto
small phyto

Daphnia
Non-Daphnia zooplank

fish biomass




(15.9)

The covariate fish biomass appears in x because it will be modeled, and its
interaction terms (Ives et al.’s C terms) appear in B. Phosporous appears in
the ct terms because it is treated as a known additive term and its interaction

15.3 Analysis a four-species plankton community 169

terms appear in C. Recall that we set u to 0 by demeaning the plankton data,
so it does not appear above. The Z matrix does not appear in front of the xt
since there is a one-to-one correspondence the x’s and y’s, and thus Z is the
identity matrix.

The B matrix is

B =

[
B(v) C

0 B(c)

]
=




bLP bLP,SP 0 0 0
0 bSP bSP,D bSP,ND 0
0 0 bD 0 CD, f ish
0 bND,SP 0 bND,ND CND, f ish
0 0 0 0 b f ish




(15.10)

The B elements have some interactions fixed at 0 as in our last model fit. The
c’s are the interactions between the fish and the species. We will estimate a
B term for fish since Ives et al. did, but this is an odd thing to do for the fish
data since these data were interpolated from two samples per season.

The Q matrix is the same as that in our last model fit, with the addition
of an element for the variance for the fish biomass:

Q =

[
Q(v) 0

0 Q(c)

]
=




qLP qLP,SP qLP,D qLP,ND 0
qLP,SP qSP qSP,D qSP,ND 0
qLP,D qSP,D qD qD,ND 0

qLP,ND qSP,ND qD,ND qND 0
0 0 0 0 q f ish




(15.11)

Again it is odd to estimate a variance term for data interpolated from two
points, but we follow Ives et al. here.

Ives et al. set the observation variance for the logged fish biomass data
to 0.36 (page 320 in Ives et al. (2003)). The observation variances for the
plankton data was set as in our previous model.

R =




0.04 0 0 0 0
0 0.04 0 0 0
0 0 0.16 0 0
0 0 0 0.16 0
0 0 0 0 0.36




(15.12)

15.3.8 Setting the model structure for the model with fish
covariate data

First we need to add the logged fish biomass to our data matrix.

#transpose to make time go across columns

#drop=FALSE so that R doesn't change our matrix to a vector

fish = t(log(ivesDataByWeek[,"Fish biomass",drop=FALSE]))

d.fish = (fish-apply(fish,1,mean,na.rm=TRUE))

#plank.dat.w.fish = rbind(plank.dat,fish)

d.plank.dat.w.fish = rbind(d.plank.dat,d.fish)

170 15 B estimation

Next make the B matrix. Some elements are estimated and others are fixed
at 0.

B=matrix(list(0),5,5)

diag(B)=list("B11","B22","B33","B44","Bfish")

B[1,2]="B12";B[2,3]="B23"; B[2,4]="B24"

B[4,2]="B42";

B[1:4,5]=list(0,0,"C32","C42")

print(B)

[,1] [,2] [,3] [,4] [,5]

[1,] "B11" "B12" 0 0 0

[2,] 0 "B22" "B23" "B24" 0

[3,] 0 0 "B33" 0 "C32"

[4,] 0 "B42" 0 "B44" "C42"

[5,] 0 0 0 0 "Bfish"

Now we have a B matrix that looks like that in Equation 15.10.
We need to add an extra row to C for the fish biomass row in x:

C=matrix(list("C11","C21",0,0,0),5,1)

Then we set up the R matrix.

R=matrix(list(0),5,5)

diag(R)=list(0.04,0.04,0.16,0.16,0.36)

Last, we need to set up the Q matrix:

Q=matrix(list(0),5,5);

Q[1:4,1:4]=paste(rep(1:4,times=4),rep(1:4,each=4),sep="")

Q[5,5]="fish"

Q[lower.tri(Q)]=t(Q)[lower.tri(Q)]

print(Q)

[,1] [,2] [,3] [,4] [,5]

[1,] "11" "12" "13" "14" 0

[2,] "12" "22" "23" "24" 0

[3,] "13" "23" "33" "34" 0

[4,] "14" "24" "34" "44" 0

[5,] 0 0 0 0 "fish"

15.3.9 Fit the model with covariates

The model is the same as the previous model with updated process parameters
and updated R. We will pass in the updated data matrix with the fish biomass
added:

15.3 Analysis a four-species plankton community 171

plank.model.5=plank.model.4

plank.model.5$B=B

plank.model.5$C=C

plank.model.5$Q=Q

plank.model.5$R=R

kem.plank.5=MARSS(d.plank.dat.w.fish, model=plank.model.5)

This is the new B matrix using covariates.

LP SP D ND

LP 0.61 -0.465 -- --

SP -- 0.333 -0.019 -0.048

D -- -- 0.896 --

ND -- 0.044 -- 0.675

Now we are getting are getting close to Ives et al.’s estimates. Compare model
5 in Table 15.1 to the first column.

Table 15.1. The parameter estimates under the different plankton models. Models
0 to 3 do not include covariates, so the C elements are blank. Bij is the effect of
species i on species j. 1=large phytoplankton, 2=small phytoplankton, 3=Daphnia,
4=non-Daphnia zooplankton. The Ives et al. (2003) estimates are from their table
2 for the low planktivory lake with the observation model.

Ives et al. Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

B11 0.48 0.77 0.50 0.65 0.62 0.61 0.61
B22 0.25 0.51 0.90 0.54 0.51 0.33 0.33
B33 0.74 0.49 0.64 0.83 0.89 0.89 0.90
B44 0.60 0.83 0.81 0.60 0.67 0.66 0.67
B12 -0.39 0.29 0.06 -0.33 -0.32 -0.46 -0.46
B23 -0.17 0.01 0.07 0.00 -0.02 -0.02 -0.02
B24 -0.11 -0.04 0.01 -0.03 0.02 -0.05 -0.05
B42 0.10 1.35 0.37 0.13 0.09 0.05 0.04
C11 0.25 0.14 0.14
C21 0.25 0.16 0.16
C32 -0.14 -0.04
C42 -0.04 -0.01

NOTE! When you include your covariates in your state model (the x part),
the reported log-likelihood is for the variate plus the covariate data. If you
want just the log-likelihood for the variates, then your replace the covariate
data with NAs and run the Kalman filter with your estimated model:

tmp=kem.plank.5

tmp$model$data[5,]=NA

LL.variates=MARSSkf(tmp)$logLik

172 15 B estimation

MARSSkf is the Kalman filter function and it needs a fitted model as out-
put by a MARSS call. We set up a temporary fitted model, tmp, equal to our
fitted model and then set the covariate data in that to NAs. We then pass
that temporary fitted model to MARSSkf to get the log-likelihood of just the
variates.

15.3.10 Discussion

The estimates for model 4 are fairly close to the Ives et al. estimates, but still
a bit different. There are two big difference between model 4 and the Ives et
al. analysis. Ives et al. had data from three lakes and the estimate of Q used
the data from all lakes.

Combining data, whether it be from different areas or years, can be done
in a MARSS model as follows. Let y1 be the first data set (say from site 1)
and y2 be the second data set (say from site 2). Then a MARSS model with
shared parameters values across datasets would be

x+
t = B+x+

t−1 + u+wt , where wt ∼ MVN(0,Q+)

y+
t = Z+x+

t + a+ + vt , where vt ∼ MVN(0,R+)
(15.13)

where the + matrices are stacked matrices from the different sites (1 and 2):
[

x1,t
x2,t

]
=

[
B 0
0 B

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+ wt , wt ∼ MVN

(
0,
[

Q q
q Q

])

[
y1,t
y2,t

]
=

[
Z 0
0 Z

][
x1,t
x2,t

]
+

[
a
a

]
+ vt , vt ∼ MVN

(
0,
[

R 0
0 R

])
(15.14)

The q in the process variance allows that the environmental variabililty might
might be correlated between datasets, i.e. if they are replicate plots that are
nearby, say. If you did not want all the parameters shared, then you replace
the B in B+ with B1 and B2, say.

The second big difference is that Ives et al. did not demean their data, but
estimated u. We could have done that too, but with all the NAs in the data
(during winter), estimating u is not robust and takes a long time. You can try
the analysis on the data that has not been demeaned and set U="unequal".
The results are not particularly different, but it takes a long, long,...long time
to converge.

You can also try using the actual fish data instead of the interpolated data.
Fish biomass was estimated at the end and start of the season, so only the
values at the start and finish of strings of fish numbers are the real data. The
others are interpolated. You can fill in those interpolated values with NAs
(missing values) and rerun model 4. The results are not appreciably different,
but the effect of fish drops a bit as you might expect when you have less fish
information. You don’t see it here, but your estimated confidence in the fish
effects would also drop since this estimate is based on less fish data.

16

Case Study 8: Combining data from multiple
time series

16.1 Overview

In this section, we consider the case where multiple time series exist and we
want to use all the datasets to estimate a common underlying state-process
or common underlying parameters. In ecological applications, this situation
aries when 1) They are time series of observations from the same species as
the original time series (e.g. aerial and land based surveys of the same same
species) or 2) They are time series collected in the same survey, but represent
observations of multiple species (e.g. we might be doing a fisheries trawl survey
that collects multiple species in each trawl). Why should we consider using
other time series? In the first scenario, where methodology differs between
time series of the same species, observation error may be survey-specific. These
time series may represent observations of multiple populations, or these may
represent multiple observations of the same population. In the second scenario,
each species should be treated as a separate process (given its own state
vector), but because the survey methodology is the same across species, it
might be reasonable to assume a shared observation error variance. If these
species have a similar response to environmental stochasticity, it might be
possible to also assume a shared process variance.

In both of the above examples, MARSS models offer a way to linking
multiple time series. If parameters are allowed to be shared among the state
processes (trend parameters, process variances) or observation processes (ob-
servation variances), parameter estimates will be more precise than if we
treated each time series as independent. By improving estimates of variance
parameters, we will also be better able to discriminate between process and
observation error variances.

In this case study, we will show examples of using MARSS to analyse mul-
tiple time series on the same species but either different populations or differ-
ent survey methods. The multivariate first-order autoregressive state process
is written as usual as:

174 16 Combining data from multiple time series

xt = Bxt−1 + u + wt where wt ∼ MVN(0,Q) (16.1)

The true population sizes at time t are represented by the state xt , whose
dimensions are equal to the number of state processes (m). The m×m matrix
B allows interaction between processes (density dependence and competition,
for instance), u is a vector describing the mean trend, and the correlation of
the process deviations is determined by the structure of the matrix Q.

The multivariate observation error model is expressed as,

yt = Zxt + a + vt where vt ∼ MVN(0,R) (16.2)

where yt is a vector of observations at time t, Z is a design matrix of 0s and 1s,
a is a vector of bias adjustments, and the correlation structure of observation
matrices is specified with the matrix R. Including Z and a will not be required
for every model, but is useful when some processes are observed multiple times.

16.2 Salmon spawner surveys

In our first application combining multiple time series, we will analyze a
dataset on Chinook salmon (Oncorhynchus tshawytscha). This data comes
from the Okanagan River in Washington state, a major tributary of the
Columbia River (headwaters in British Columbia). As an index of the abun-
dance of spawning adults, biologists have conducted redd surveys during sum-
mer months (redds are nests or collection of rocks on stream bottoms where
females deposit eggs). Aerial surveys of redds on the Okanagan have been
conducted 1956-2008. Alternative ground surveys of were initiated in 1990,
and have been conducted annually.

16.2.1 Read in and plot the raw data

head(okanaganRedds)

Year aerial ground

[1,] 1956 37 NA

[2,] 1957 53 NA

[3,] 1958 94 NA

[4,] 1959 50 NA

[5,] 1960 29 NA

[6,] 1961 NA NA

logRedds = log(t(okanaganRedds)[2:3,])

Year is in the first column, and the counts (in normal space) are in columns
2:3. Missing observations are represented by NAs.

16.2 Salmon spawner surveys 175

Code for plotting raw Okanagan redd counts

plot(okanaganRedds[,1], okanaganRedds[,2],

xlab = "Year", ylab="Redd counts",main="", col="red")

points(okanaganRedds[,1], okanaganRedds[,3], col="blue")

legend('topleft', inset=0.1, legend=c("Aerial survey","Ground survey"),

col=c("red","blue"), pch=21)

●●
●

●● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●
●●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1960 1970 1980 1990 2000 2010

0
50

0
10

00
15

00
20

00

Year

R
ed

d
co

un
ts

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Aerial survey
Ground survey

Fig. 16.1. The two time series look to be pretty close to one another in the years
where there is overlap.

16.2.2 Test hypotheses about whether the data can be combined

Do these surveys represent observations of the same underlying process? We
can evaluate data support for this question by testing a few relatively simple
models. First, we need to make sure the data are logged:

Using the logged data, we will start with a simple model that assumes
the underlying process is univariate. This assumes that the time series are
observations of the same population, and there are 2 process parameters (1
trend, 1 process variance).

Q.model="diagonal and equal"

R.model="diagonal and equal"

U.model="equal"

176 16 Combining data from multiple time series

Z.model=factor(c(1,1)) #1 observation time series

Fit the single state model, where the time series are assumed

to be from thesame population.

kem1 = MARSS(logRedds, model=list(Z = Z.model, Q = Q.model,

R = R.model, U = U.model))

We can print the AIC value for this model by typing kem1$AIC and kem1$AICc.
How would we modify the above model to let the observation error vari-

ances to be unique? We can do this in our second model:

R.model="diagonal and unequal"

kem2 = MARSS(logRedds, model=list(Z = Z.model, Q = Q.model,

R = R.model, U = U.model))

It is possible that these models are measuring different population pro-
cesses, so we will fit a model with two state vectors. For simplicity (and be-
cause of the AIC values from our first two models), we will keep the trend
and variance parameters the same.

Q.constraint="diagonal and equal"

R.constraint="diagonal and equal"

U.constraint="equal"

Z.constraint=factor(c(1,2))

model3=list(Z = Z.model, Q = Q.model, R = R.model, U = U.model)

kem3 = MARSS(logRedds, model=model3)

Which of the above models receives the most support from the data? It looks
like the best model is also the simplest one, with one state vector. This suggests
that the two different surveys are not only measuring the same thing, but have
the same observation error variance. Finally,we will make a plot of the model-
predicted states (with +/- 2 s.e.s) and the log-transformed data (Figure 16.2).

16.3 American kestrel abundance indices

In this example, we evaluate uncertainty in the structure of process variabil-
ity (environmental stochasticity) using some bird survey data. Breeding Bird
Surveys have been conducted in the U.S. and Canada for 50+ years. In this
analysis, we focus on 3 time series of American kestrel (Falco sparverius)
abundance from adjacent Canadian provinces along a longitudinal gradient
(British Columbia, Alberta, Saskatchewan). Data have been collected annu-
ally, and corrected for changes in observer coverage and detectability.

16.3.1 Read in and look at the data

Figure 16.3 shows the data.

16.3 American kestrel abundance indices 177

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1960 1970 1980 1990 2000 2010

0
2

4
6

8

Year

R
ed

d
co

un
ts

Fig. 16.2. The data support the hypothesis that the two redd-count time series are
observations of the same population. The points are the data and the thick black
line is the estimated underlying state.

birddat = t(kestrel[,2:4])

head(kestrel)

Year British.Columbia Alberta Saskatchewan

[1,] 1969 0.754 0.460 0.000

[2,] 1970 0.673 0.899 0.192

[3,] 1971 0.734 1.133 0.280

[4,] 1972 0.589 0.528 0.386

[5,] 1973 1.405 0.789 0.451

[6,] 1974 0.624 0.528 0.234

We know that the surveys use the same design, so we will force observa-
tion error to be shared. Our uncertainty lies in whether these time series are
sampling the same population, and how environmental stochasiticity varies
by subpopulation. Our first model has 1 state vector, and equal observation
variances:

178 16 Combining data from multiple time series

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

● ●

●

1970 1980 1990 2000

0.
0

0.
5

1.
0

1.
5

2.
0

Year

In
de

x
of

 k
es

tr
el

 a
bu

nd
an

ce

● British Columbia
Alberta
Saskatchewan

Fig. 16.3. The kestrel data.

Q.model="diagonal and equal"

R.model="diagonal and equal"

U.model="equal"

Z.model=factor(c(1,1,1))

model1=list(Z = Z.model, Q = Q.model, R = R.model, U = U.model)

kem1 = MARSS(birddat, model=model1, control=list(minit=100))

kem1$AICc

[1] 20.9067

Let’s compare this to a model with separate state vectors:

Z.model=factor(c(1,2,3))

model2=list(Z = Z.model, Q = Q.model, R = R.model, U = U.model)

kem2 = MARSS(birddat, model=model2)

kem2$AICc

[1] 22.96714

16.3 American kestrel abundance indices 179

Because these populations are surveyed over a relatively large geographic
area, it is reasonable to expect that environmental variation may differ be-
tween populations. Third, we will fit a model with separate processes and
unequal process variance parameters.

Q.model="diagonal and unequal"

model3=list(Z = Z.model, Q = Q.model, R = R.model, U = U.model)

kem3 = MARSS(birddat, model=model3)

kem3$AICc

[1] 19.33238

Finally for a fourth model, we will consider lumping Alberta/Saskatchewan,
because the time series indicate similar trends.

Z.model=factor(c(1,2,2)) #1 observation time series for each x time series

model4=list(Z = Z.model, Q = Q.model, R = R.model, U = U.model)

kem4 = MARSS(birddat, model=model4)

kem4$AICc

[1] 12.47801

This last model was superior to the others, improving the AICc value com-
pared to model 1 by 8 units. Figure 16.4 shows the fits for this model.

180 16 Combining data from multiple time series

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

● ●

●

1970 1980 1990 2000

0.
0

0.
5

1.
0

1.
5

2.
0

Year

In
de

x
of

 k
es

tr
el

 a
bu

nd
an

ce

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ● ●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

British Columbia
Alberta
Saskatchewan

Fig. 16.4. Plot model 4 fits to the kestrel data.

A

Textbooks and articles that use MARSS
modeling for population modeling

Textbooks Describing the Estimation of Process and
Non-process Variance

There are many textbooks on Kalman filtering and estimation of state-space
models. The following are a sample of books on state-space modeling that we
have found especially helpful.

Shumway, R. H., and D. S. Stoffer. 2006. Time series analysis and its
applications. Springer-Verlag.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press.

Durbin, J., and S. J. Koopman. 2001. Time series analysis by state space
methods. Oxford University Press.

Kim, C. J. and Nelson, C. R. 1999. State space models with regime switch-
ing. MIT Press.

King, R., G. Olivier, B. Morgan, and S. Brooks. 2009. Bayesian analysis
for population ecology. CRC Press.

Giovanni, P., S. Petrone, and P. Campagnoli. 2009. Dynamic linear models
in R. Springer-Verlag.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian forecasting
and time series analysis. Chapman and Hall.

Bolker, B. 2008. Ecological models and data in R. Princeton University
Press.

West, M. and Harrison, J. 1997. Bayesian forecasting and dynamic models.
Springer-Verlag.

Tsay, R. S. 2010. Analysis of financial time series. Wiley.

Maximum-likelihood papers

This is just a sample of the papers from the population modeling literature.

182 A Textbooks and articles that use MARSS modeling for population modeling

de Valpine, P. 2002. Review of methods for fitting time-series models with
process and observation error and likelihood calculations for nonlinear, non-
Gaussian state-space models. Bulletin of Marine Science 70:455-471.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorpo-
rating process noise and observation error. Ecological Monographs 72:57-76.

de Valpine, P. 2003. Better inferences from population-dynamics exper-
iments using Monte Carlo state-space likelihood methods. Ecology 84:3064-
3077.

de Valpine, P. and R. Hilborn. 2005. State-space likelihoods for nonlin-
ear fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences
62:1937-1952.

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006.
Estimating density dependence, process noise, and observation error. Ecolog-
ical Monographs 76:323-341.

Ellner, S.P. and E.E. Holmes. 2008. Resolving the debate on when extinc-
tion risk is predictable. Ecology Letters 11:E1-E5.

Erzini, K. 2005. Trends in NE Atlantic landings (southern Portugal): iden-
tifying the relative importance of fisheries and environmental variables. Fish-
eries Oceanography 14:195-209.

Erzini, K., Inejih, C. A. O., and K. A. Stobberup. 2005. An applica-
tion of two techniques for the analysis of short, multivariate non-stationary
time-series of Mauritanian trawl survey data ICES Journal of Marine Science
62:353-359.

Hinrichsen, R.A. and E.E. Holmes. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In Spatial Ecology (editors
Robert Stephen Cantrell, Chris Cosner, Shigui Ruan). CRC/Chapman Hall.

Hinrichsen, R.A. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197-1202.

Holmes, E.E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072-5077.

Holmes, E.E. and W.F. Fagan. 2002. Validating population viability anal-
ysis for corrupted data sets. Ecology 83:2379-2386.

Holmes, E.E. 2004. Beyond theory to application and evaluation: diffu-
sion approximations for population viability analysis. Ecological Applications
14:1272-1293.

Holmes, E.E., W.F. Fagan, J.J. Rango, A. Folarin, S.J.A., J.E. Lippe, and
N.E. McIntyre. 2005. Cross validation of quasi-extinction risks from real time
series: An examination of diffusion approximation methods. U.S. Department
of Commerce, NOAA Tech. Memo. NMFS-NWFSC-67, Washington, DC.

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical
approach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

Kalman, R.E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35-45.

A Textbooks and articles that use MARSS modeling for population modeling 183

Lele, S.R. 2006. Sampling variability and estimates of density dependence:
a composite likelihood approach. Ecology 87:189-202.

Lele, S.R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian Markov
chain Monte Carlo methods. Ecology Letters 10:551-563.

Lindley, S.T. 2003. Estimation of population growth and extinction pa-
rameters from noisy data. Ecological Applications 13:806-813.

Ponciano, J.M., M.L. Taper, B. Dennis, S.R. Lele. 2009. Hierarchical mod-
els in ecology: confidence intervals, hypothesis testing, and model selection
using data cloning. Ecology 90:356-362.

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population
trend and process variation for PVA in the presence of sampling error. Ecology
85:923-929.

Zuur, A. F., and G. J. Pierce. 2004. Common trends in Northeast Atlantic
squid time series. Journal of Sea Research 52:57-72.

Zuur, A. F., I. D. Tuck, and N. Bailey. 2003. Dynamic factor analysis to
estimate common trends in fisheries time series. Canadian Journal of Fisheries
and Aquatic Sciences 60:542-552.

Zuur, A. F., R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. 2003.
Estimating common trends in multivariate time series using dynamic factor
analysis. Environmetrics 14:665-685.

Bayesian papers

This is a sample of the papers from the population modeling and animal
tracking literature.

Buckland, S.T., K.B. Newman, L. Thomas and N.B. Koestersa. 2004.
State-space models for the dynamics of wild animal populations. Ecological
modeling 171:157-175.

Calder, C., M. Lavine, P. Müller, J.S. Clark. 2003. Incorporating multiple
sources of stochasticity into dynamic population models. Ecology 84:1395-
1402.

Chaloupka, M. and G. Balazs. 2007. Using Bayesian state-space modelling
to assess the recovery and harvest potential of the Hawaiian green sea turtle
stock. Ecological Modelling 205:93-109.

Clark, J.S. and O.N. Bjørnstad. 2004. Population time series: process vari-
ability, observation errors, missing values, lags, and hidden states. Ecology
85:3140-3150.

Jonsen, I.D., R.A. Myers, and J.M. Flemming. 2003. Meta-analysis of an-
imal movement using state space models. Ecology 84:3055-3063.

Jonsen, I.D, J.M. Flemming, and R.A. Myers. 2005. Robust state-space
modeling of animal movement data. Ecology 86:2874-2880.

184 A Textbooks and articles that use MARSS modeling for population modeling

Meyer, R. and R.B. Millar. 1999. BUGS in Bayesian stock assessments.
Can. J. Fish. Aquat. Sci. 56:1078-1087.

Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state-
space implementation of the delay difference model. Can. J. Fish. Aquat. Sci.
56:37-52.

Meyer, R. and R.B. Millar. 2000. Bayesian state-space modeling of age-
structured data: fitting a model is just the beginning. Can. J. Fish. Aquat.
Sci. 57:43-50.

Newman, K.B., S.T. Buckland, S.T. Lindley, L. Thomas, and C. Fernán-
dez. 2006. Hidden process models for animal population dynamics. Ecological
Applications 16:74-86.

Newman, K.B., C. Fernández, L. Thomas, and S.T. Buckland. 2009. Monte
Carlo inference for state-space models of wild animal populations. Biometrics
65:572-583

Rivot, E., E. Prévost, E. Parent, and J.L. Baglinière. 2004. A Bayesian
state-space modelling framework for fitting a salmon stage-structured popu-
lation dynamic model to multiple time series of field data. Ecological Modeling
179:463-485.

Schnute, J.T. 1994. A general framework for developing sequential fisheries
models. Canadian J. Fisheries and Aquatic Sciences 51:1676-1688.

Swain, D.P., I.D. Jonsen, J.E. Simon, and R.A. Myers. 2009. Assessing
threats to species at risk using stage-structured state-space models: mortality
trends in skate populations. Ecological Applications 19:1347-1364.

Thogmartin, W.E., J.R. Sauer, and M.G. Knutson. 2004. A hierarchical
spatial model of avian abundance with application to cerulean warblers. Eco-
logical Applications 14:1766-1779.

Trenkel, V.M., D.A. Elston, and S.T. Buckland. 2000. Fitting population
dynamics models to count and cull data using sequential importance sampling.
J. Am. Stat. Assoc. 95:363-374.

Viljugrein, H., N.C. Stenseth, G.W. Smith, and G.H. Steinbakk. 2005.
Density dependence in North American ducks. Ecology 86:245-254.

Ward, E.J., R. Hilborn, R.G. Towell, and L. Gerber. 2007. A state-space
mixture approach for estimating catastrophic events in time series data. Can.
J. Fish. Aquat. Sci., Can. J. Fish. Aquat. Sci. 644:899-910.

Wikle, C.K., L.M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian
space-time models. Journal of Environmental and Ecological Statistics 5:117-
154

Wikle, C.K. 2003. Hierarchical Bayesian models for predicting the spread
of ecological processes. Ecology 84:1382-1394.

B

Package MARSS: Warnings and errors

The following are brief descriptions of the warning and error message you may
see and what they mean (or might mean).

B update is outside the unit circle

If you are estimating B, then if the absolute value of all the eigenvalues of B are
less than 1, the system is stationary (meaning the X’s have some multivariate
distribution that does not change over time). In this case, we say that B is
within the unit circle. A pure univariate random walk for example would have
B=1 and it is not stationary. The distribution of X for the pure random walk
has a variance that increases with time. If on the other hand |B|< 1, you have
an Ornstein-Uhlenbeck process and is stationary, with a stationary variance
of Q/(1−B2) (note B is a scalar here because in this example X is univariate).
If any of the eigenvalues (real part) are greater than 1, then the system will
“explode”—it rapidly diverges.

In the EM algorithm, there is nothing to force B to be on or within the
unit circle (real part of the eigenvalues less than or equal to 1). It is possible
at one of the EM iterations the B update will be outside the unit circle. The
problem is that if you get too far outside the unit circle, the algorithm becomes
numerically unstable since small errors are magnified by the “explosive” B
term. If you see the ‘B outside the unit circle’ warning, it is fine as long as it
is temporary and the log-likelihood does not start decreasing (you will see a
separate warning if that happens).

If you do see B outside the unit circle and the log-likelihood decreases,
then it probably means that you have poorly specified the model somehow.
An easy way to do this is to poorly specify the initial conditions, π and Λ.
If, say, you try to specify a vague prior on x0 (or x1) with π equal to zero
and Λ equal to a diagonal matrix with a large variance on the diagonal, you
will likely run into trouble if B has off-diagonal terms. The reason is that by
specifying that Λ is diagonal, you specified that the individual X ’s in X0 are

186 B Package MARSS: Warnings and errors

independent, yet if B has off-diagonal terms, the stationary distribution of X1
is NOT independent. If you force the diagonal terms on Λ to be big enough,
you can force the maximum-likelihood estimate of B to be outside the unit
circle since this is the only way to account for X0 independent and X1 highly
correlated.

The problem is that you will not know the stationary distribution of the X’s
(from which X0 was presumably drawn) without knowing the parameters you
are trying to estimate. One approach is the estimate both π and Λ by setting
x0="unconstrained" and V0="unconstrained" in the model specification.
Estimating both π and Λ cannot be done robustly for all MARSS models, and
in general, one probably wants to specify the model in such a way as to fix
one or both of these. Another, more robust approach, is to treat x1 as fixed
but unknown (instead of x0). You do this by setting model$tinitx=1, so that
π refers to t = 1 not t = 0. Then estimate π and fix Λ = 0. This eliminates Λ
from the model and often eliminates the problems with prior specification—
as the expense of m more parameters. Note, when you set Λ = 0, Λ is truly
eliminated from the model by MARSS; the likelihood function is different, so
do not expect Λ = 0 and Λ∼ 0 to have the same likelihood under all conditions.

Warning! Reached maxit before parameters converged

The maximum number of EM iterations is set by control$maxit. If you get
this warning, it means that one of the parameters or log-likelihood had not
yet reached the convergence stopping criteria before maxit was reached. There
are many situations where you might want to set control$maxit lower than
the value needed to reach convergence. For example, if you are using the EM
algorithm to produce initial values for a different algorithm (like a Bayesian
MCMC algorithm or a Newton method) then you can set maxit low, say 20
or 50.

Stopped at iter=xx in MARSSkem() because numerical
errors were generated in MARSSkf

This means the Kalman filter/smoother algorithm became unstable and most
likely one of the variances became ill-conditioned. When that happens the
inverses of those matrices are poor, and you will start to get negative values
on the diagonals of your variance-covariance matrices. Once that happens, the
inverse of that var-covariance matrix produces an error. If you get this error,
turn on tracing with control$trace=1. This will store the error messages so
you can see what is going on. It may be that you have specified the model in
such a way that some of the variances are being forced very close to 0, which
makes the var-covariance matrix ill-conditioned. The output from the MARSS
call will be the parameter values just before the error occurred.

B Package MARSS: Warnings and errors 187

Warning: the xyz parameter value has not converged

The algorithm checks whether the log-likelihood and each individual param-
eter has converged. If a parameter has not converged, you can try upping
control$maxit and see if it converges. If you set, maxit high, but the param-
eter is still not converging, then it suggests that one of the variance parameters
is so small that the EM update steps for that parameter are tiny. For example,
as Q goes to zero, the update steps for u go to zero. As Λ goes to zero, the
update steps for π go to zero. The first thing to do is to reflect on whether you
are inadvertently specifying the model in such a way that one of the variances
is forced to zero. For example, if the total variance in X is 0.1 and you fix
R = 0.2 then Q must go to zero. The second thing to do is to try using a
Newton algorithm, using your last EM values as the initial conditions for the
Newton algorithm. The initial values are set using the inits argument for
the MARSS() function.

MARSSkem: The soln became unstable and logLik
DROPPED

This is a more serious error as in the EM algorithm, the log-likelihood should
never drop. The first thing to do is check if you have specified a bizarre
model or data, inadvertently. Plot the data you are trying to fit. Often, this
error arises when a user has inadvertently scrambled their data order during
a demeaning or variance-standardization step. Second, check the model you
are trying to fit. Use test=MARSS(data, model=xyz, fit=FALSE) and then
summary(test$model). This shows you what MARSS() thinks your model is.
You may be trying to fit an illogical model.

If those checks looks good, then pass control$trace=1 into the MARSS()

call. This will report a fuller set of warnings. Look if the error “B is outside
the unit circle” appears. If so, you are probably specifying a strange B matrix.
Are you forcing the B matrix to be outside the unit circle (eigenvalues >
1)? If so, you need to rethink your B matrix contraints. If you do not see
that error, look at test$iter.record$logLik. If the log-likelihood is steadily
dropping (at each iteration) or drops by large amounts (much larger than the
machine precision), that is bad and means that the EM algorithm did not
work. If however the log-likelihood is just fluctuating by small amounts about
some steady value, that is ok as it means that the values converged but the
parameters are such that there are slight numerical fluctuations. Try passing
control$safe=TRUE in the MARSS() call. This can sometimes help as it inserts
a call to the Kalman filter after each individual parameter update.

188 B Package MARSS: Warnings and errors

Stopped at iter=xx in MARSSkem: solution became
unstable. R (or Q) update is not positive definite

First check if you have specified an illegally constrained variance-covariance
matrix. For example, if the variances (diagonal) are constrained to be equal,
you cannot specify the covariances (off-diagonals) as unequal. Or if you specify
that some of the covariances are equal, you cannot specify the variances as all
unequal. These are illegal constraints on a variance-covariance matrix from a
statistical perspective (nothing to do with MARSS specifically).

This could also be due to numerical instability as B leaves the unit circle
or one of the variance matrix becomes ill-conditioned. Try turning on tracing
with control$trace=1 and turn on safe with control$safe=TRUE. This will
print out the error warnings at each parameter update step. Then consider
whether you have inadvertently specified the model in such a way as to force
this behavior in the B parameter.

You might also get this error if you inadvertantly specified an improper
structure for R or Q. For example, if you used R=diag(c(1,1,"r")) with
the intent of specifying a diagonal matrix with fixed variance 1 at R[1,1] and
R[2,2] and an estimated R[3,3], you would have actually specified a character
matrix with "0" on the off-diagonals and c("1","1","r") on the diagonal.
MARSS() interprets all elements in quotes as names of parameters to be
estimated. Thus it will estimate one off-diagonal covariance and two diagonal
variances. That happens to put illegal constraints on estimation of a variance-
covariance matrix having nothing to do with MARSS() but with estimation
of variance-covariance matrices in general.

iter=xx MARSSkf: logLik computation is becoming
unstable. Condition num. of Sigma[t=1] = Inf and of R
= Inf.

This means, generally, that V0 is very small, say 0, and R is very small and
very close to zero.

Warning: setting diagonal to 0 blocked at iter=X.
logLik was lower in attempt to set 0 diagonals on X

This is a warning not an error. What is happening is that one of the variances
(in Q or R) is getting small and the EM algorithm is attempting to set the
value to 0 (because control$degen.allow=TRUE). But when it tried to do this,
the new likelihood with the variance equal to 0 was lower and the variance
was not set to 0.

A model with a variance minuscule and a model with the same variance
equal to 0 are not the same model. In the first, a stochastic process with

B Package MARSS: Warnings and errors 189

small variance exists but in the second, the analogous process is determinis-
tic. And in the first case, you can get a situation where the likelihood term
L(x|mean=mu,sigma=0) appears. That term will be infinite when x=mu. So
in the model with variance minuscule, you will get very large likelihood values
as the variance term gets smaller and smaller. In the analogous model with
that variance set to 0, that likelihood term does not appear so the likelihood
does not go to infinity.

This is not an error nor pathological behavior; the models are fundamen-
tally different. Nonetheless, this will pose a dilemma when you want to chose
the best model based on maximum likelihood. The model with minuscule
variance will have infinite likelihood but the same behavior as the one with
variance 0. In our experience, this dilemma arises when one has a lot of miss-
ing data near the beginning of the time series and is affected by how you
specify the prior on the initial state. Try setting the prior at t = 0 versus t = 1.
Try using a diffuse prior. You absolutely want to compare estimates using the
BFGS and EM algorithms in this case, because the different algorithms differ
in their ability to find the maximum in this strange case. Neither is uniformly
better or worse. It seems to depend on which variance (Q or R) is going to
zero.

Warning: kf returned error at iter=X in attempt to set 0
diagonals for X

This is a warning that the EM algorithm tried to set one of the diagonals of
element X to 0 because allow.degen is TRUE and element X is going to zero.
However when this was tried, the Kalman filter returned an error. Typically,
this happens when both R and Q elements are both trying to be set to 0. If
the maximum-likelihood estimate is that both R and Q are zero, it probably
means that your MARSS model is not a very good description of the data.

Warning: At iter=X attempt to set 0 diagonals for R
blocked for elements where corresponding rows of A or
Z are not fixed.

You have control$degen.allow=TRUE and one of the R diagonal elements is
getting very small. MARSS attempts to set these R elements to 0, but if row
i of R is 0, then the corresponding i rows of a and Z must be fixed. This is for
the EM algorithm. It might work with the BFGS algorithm, or might spit out
garbage without telling you. Always be a suspect, when the EM and BFGS
behavior is different. That is a good sign that something is wrong with how
your model describes the data. It’s not a problem with the algorithms per se;
rather for certain pathological models, the algorithms behave differently from
each other.

190 B Package MARSS: Warnings and errors

Stopped at iter=X in MARSSkem. XYZ is not
invertible.

There are a series of checks in MARSS that check if matrix inversions are pos-
sible before doing the inversion. These errors crop up most often when Q or
R are getting very small. At some point, they can get so small that inversions
become unstable. If this error is given, then the output will be the last pa-
rameter estimates before the error. Try setting control$allow.degen=FALSE.
Sometimes the error occurs when a diagonal element of Q or R is being set to
0. You will also have to set control$maxit to something smaller because the
EM algorithm will not stop since the problematic diagonal element will walk
slowly and inexorably to 0.

References

Biernacki, C., Celeux, G., and Govaert, G. 2003. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivari-
ate gaussian mixture models. Computational Statistics and Data Analysis
41:561–575.

Brockwell, P. J. and Davis, R. A. 1991. Time series: theory and methods.
Springer-Verlag, New York, NY.

Cavanaugh, J. and Shumway, R. 1997. A bootstrap variant of AIC for
state-space model selection. Statistica Sinica 7:473–496.

de Jong, P. and Penzer, J. 1998. Diagnosing shocks in time series. Journal
of the American Statistical Association 93:796–806.

Dempster, A., Laird, N., and Rubin, D. 1977. Likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39:1–38.

Dennis, B., Munholland, P. L., and Scott, J. M. 1991. Estimation
of growth and extinction parameters for endangered species. Ecological
Monographs 61:115–143.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples,
D. F. 2006. Estimating density dependence, process noise, and observation
error. Ecological Monographs 76:323–341.

Ellner, S. P. and Holmes, E. E. 2008. Resolving the debate on when
extinction risk is predictable. Ecology Letters 11:E1–E5.

Gerber, L. R., Master, D. P. D., and Kareiva, P. M. 1999. Grey
whales and the value of monitoring data in implementing the u.s. endan-
gered species act. Conservation Biology 13:1215–1219.

Ghahramani, Z. and Hinton, G. E. 1996. Parameter estimation for
linear dynamical systems. Technical Report CRG-TR-96-2, University of
Totronto, Dept. of Computer Science.

Hampton, S. E., Izmest’Eva, L. R., Moore, M. V., Katz, S. L., Den-
nis, B., and Silow, E. A. 2008. Sixty years of environmental change in
the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change
Biology 14:1947–1958.

192 References

Hampton, S. E., Scheuerell, M. D., and Schindler, D. E. 2006. Coa-
lescence in the lake washington story: Interaction strengths in a planktonic
food web. Limnology and Oceanography 51:2042–2051.

Hampton, S. E. and Schindler, D. E. 2006. Empirical evaluation of
observation scale effects in community time series. Oikos 113:424–439.

Harvey, A., Koopman, S. J., and Penzer, J. 1998. Messy time series: a
unified approach. Advances in Econometrics 13:103–143.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Harvey, A. C. and Koopman, S. J. 1992. Diagnostic checking of unob-
served components time series models. Journal of Business and Economic
Statistics 10:377–389.

Harvey, A. C. and Phillips, G. D. A. 1979. Maximum likelihood estima-
tion of regression models with autoregressive-moving average disturbances.
Biometrika 66:49–58.

Harvey, A. C. and Shephard, N. 1993. Structural time series models. In
G. S. Maddala, C. R. Rao, and H. D. Vinod (eds.), Handbook of Statistics,
Volume 11. Elsevier Science Publishers B V, Amsterdam.

Hinrichsen, R. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197–1202.

Hinrichsen, R. and Holmes, E. E. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In R. S. Cantrell, C.
Cosner, and S. Ruan (eds.), Spatial Ecology. CRC/Chapman Hall.

Holmes, E. E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072–5077.

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion
approximations for population viability analysis. Ecological Applications
14:1272–1293.

Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and
unconstrained marss models. Technical report, Northwest Fisheries Science
Center, Mathematical Biology Program.

Holmes, E. E., Sabo, J. L., Viscido, S. V., and Fagan, W. F. 2007.
A statistical approach to quasi-extinction forecasting. Ecology Letters
10:1182–1198.

Holmes, E. E., Ward, E. J., and Wills, K. 2012. Marss: Multivariate
autoregressive state-space models for analyzing time-series data. The R
Journal 4:11–19.

Holmes, E. E. and Ward, E. W. 2010. Analyzing noisy, gappy, and mul-
tivariate population abundance data: modeling, estimation, and model se-
lection in a maximum-likelihood framework. Technical report, Northwest
Fisheries Science Center, Mathematical Biology Program.

Ives, A. R. 1995. Measuring resilience in stochastic systems. Ecological
Monographs 65:217–233.

References 193

Ives, A. R., Carpenter, S. R., and Dennis, B. 1999. Community interac-
tion webs and zooplankton responses to planktivory manipulations. Ecology
80:1405–1421.

Ives, A. R., Dennis, B., Cottingham, K. L., and Carpenter, S. R.
2003. Estimating community stability and ecological interactions from time-
series data. Ecological Monographs 73:301–330.

Jeffries, S., Huber, H., Calambokidis, J., and Laake, J. 2003. Trends
and status of harbor seals in washington state 1978-1999. Journal of Wildlife
Management 67:208–219.

Kalman, R. E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35–45.

Klug, J. L. and Cottingham, K. L. 2001. Interactions among environ-
mental drivers: Community responses to changing nutrients and dissolved
organic carbon. Ecology 82:3390–3403.

Kohn, R. and Ansley, C. F. 1989. A fast algorithm for signal extraction,
influence and cross-validation in state-space models. Biometrika 76:65–79.

Koopman, S. J. 1993. Distrubance smoother for state space models.
Biometrika 80:117–126.

Koopman, S. J., Shephard, N., and Doornik, J. A. 1999. Statistical
algorithms for models in state space using ssfpack 2.2. Econometrics Journal
2:113–166.

Lele, S. R., Dennis, B., and Lutscher, F. 2007. Data cloning: easy max-
imum likelihood estimation for complex ecological models using bayesian
markov chain monte carlo methods. Ecology Letters 10:551–563.

McLachlan, G. J. and Krishnan, T. 2008. The EM algorithm and ex-
tensions. John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Penzer, J. 2001. Critical values for time series diagnostics. Technical report,
Department of Statistics, London School of Economics.

Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Trans-
actions on Automatic Control 8:371–372.

Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood
estimation of linear dynamical systems. Journal of AIAA 3:1445–1450.

Schweppe, F. C. 1965. Evaluation of likelihood functions for Gaussian sig-
nals. IEEE Transactions on Information Theory IT-r:294–305.

Shumway, R. and Stoffer, D. 2006. Time series analysis and its applica-
tions. Springer-Science+Business Media, LLC, New York, New York, 2nd
edition.

Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series
smoothing and forecasting using the EM algorithm. Journal of Time Series
Analysis 3:253–264.

Staples, D. F., Taper, M. L., and Dennis, B. 2004. Estimating popula-
tion trend and process variation for PVA in the presence of sampling error.
Ecology 85:923–929.

194 References

Stoffer, D. S. and Wall, K. D. 1991. Bootstrapping state-space models:
Gaussian maximum likelihood estimation and the Kalman filter. Journal
of the American Statistical Association 86:1024–1033.

Taper, M. L. and Dennis, B. 1994. Density dependence in time series ob-
servations of natural populations: estimation and testing. Ecological Mono-
graphs 64:205–224.

Tsay, R. S. 2010. Analysis of financial time series. Wiley Series in Probability
and Statistics. Wiley.

Ward, E. J., Chirakkal, H., González-Suárez, M., Aurioles-
Gamboa, D., Holmes, E. E., and Gerber, L. 2010. Inferring spatial
structure from time-series data: using multivariate state-space models to
detect metapopulation structure of California sea lions in the Gulf of Cali-
fornia, Mexico. Journal of Applied Ecology 1:47–56.

Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., and Beukema,
J. J. 2003. Estimating common trends in multivariate time series using
dynamic factor analysis. Environmetrics 14:665–685.

Index

animal tracking, 135
kftrack, 141

bootstrap
innovations, 12, 26, 27
MARSSboot function, 12
parametric, 12, 26, 27

confidence intervals, 88
Hessian approximation, 13, 88
MARSSparamCIs function, 13
non-parametric bootstrap, 13
parametric bootstrap, 13, 88

covariates, 51, 165, 168

density-independent, 71
diagnostics, 99

error
observation, 72
process, 71, 72

errors
degenerate, 6
ill-conditioned, 6

estimation, 75
BFGS, 32
Dennis method, 76
EM, 12, 25, 75
Kalman filter, 12, 23
Kalman smoother, 12, 23
maximum-likelihood, 75, 76
Newton methods, 26
quasi-Newton, 12, 32
REML, 5

extinction, 71
diffusion approximation, 80
uncertainty, 84

functions
is.marssm, 13
is.marssMLE, 12
MARSS, 11, 31, 34, 36, 37
MARSSaic, 12, 26, 27, 48
MARSSboot, 12, 26, 46
MARSShessian, 13
MARSSkem, 12, 25, 26
MARSSkf, 12, 23, 24, 43
MARSSkfas, 24
MARSSmcinit, 12, 26
MARSSoptim, 12
MARSSparamCIs, 5, 13, 26, 41
MARSSsimulate, 13, 27, 48
MARSSvectorizeparam, 13, 43
optim, 12
summary, 13, 40

initial conditions
setting for BFGS, 33

KFAS package, 4

likelihood, 12, 24, 48
and missing values, 25
innovations algorithm, 24
MARSSkf function, 48
missing value modifications, 24
multimodal, 26
troubleshooting, 6, 26

196 Index

MAR(p), 61
MARSS model, 1, 135

DFA example, 119
multivariate example, 91, 111, 135
print, 40
summary, 40
univariate example, 71

missing values, 5
and AICb, 27
and parametric bootstrap, 26
likelihood correction, 25

model selection, 27, 111
AIC, 27, 97, 99, 108, 109, 114, 118
AICc, 27, 108
bootstrap AIC, 27, 108
bootstrap AIC, AICbb, 27, 48
bootstrap AIC, AICbp, V, 27, 48, 108

MARSSaic function, 12, 48
model specification

in MARSS, 15

objects
marssm, 11, 13
marssMLE, 11

outliers, 145

prior, 2, 19, 30
diffuse, 149
troubleshooting, 5, 33, 158, 186, 188

simulation, 27, 48, 72
MARSSsimulate function, 13, 48

standard errors, 13
structural breaks, 145

